资源类型

期刊论文 9

年份

2023 1

2022 1

2021 1

2020 2

2018 1

2015 1

2014 1

展开 ︾

关键词

原位热解 1

生物质转化 1

纳米零价铁生物炭 1

铁相转移 1

展开 ︾

检索范围:

排序: 展示方式:

Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison with nZVI

Kubra Ulucan-Altuntas, Eyup Debik

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1196-2

摘要: DDT undergoes dechlorination via Fe/Pd bimetallic nanoparticle. The oxidation effect of nZVI on DDT is greatly improved when Pd is dopped. The highest concentration to be treated under cancerogenesis limit was 110 mg/L. The dechlorination of DDT is more like to DDE via Fe/Pd but to DDD via nZVI. Degradation products concentrations are lowered via Fe/Pd when compared with nZVI. In this study, the bimetallic Fe/Pd nanoparticle was synthesized using the catalytic element palladium to increase the effect of nano zero valent iron (nZVI), in the light of the information obtained from our previous study, in which the nZVI synthesis method was modified. Dichlorodiphenyltrichloroethane (DDT), one of the most widely used persistent organic pollutant pesticides in the world, was investigated in terms of its degradation by Fe/Pd nanoparticles and the difference with nZVI was determined. During the study, the Fe/Pd concentration, initial DDT concentration, and contact time were selected as variables affecting the treatment. The highest possible initial DDT concentration for the treatment with Fe/Pd bimetallic nanoparticle was investigated to obtain the DDT effluent concentration below the carcinogenesis limit, 0.23 µg/L. The highest concentration that could be treated was found to be 109.95 mg/L with Fe/Pd. It was found that 44.3 min of contact time and 550 mg/L Fe/Pd concentration were needed to achieve this treatment.

关键词: Persistent organic pollutants     nZVI     Bimetallic nanoparticle     Organochlorine pesticides     DDT    

Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline

Xiangyu Wang, Weitao Lian, Xin Sun, Jun Ma, Ping Ning

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1066-3

摘要:

Novel method for polydopamine (PDA) modified biochar (BC) with immobilized NZVI.

PDA/NZVI@BC exhibits significantly enhanced activity for tetracycline (TC) removal.

TC removal efficiency was increased by 55.9% compared with that of pristine NZVI.

The mechanism of tetracycline removal by PDA/NZVI@BC was proposed.

关键词: Biochar     Polydopamine     NZVI     Modification     Tetracycline    

Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment

Yanlai HAN,Michael D. Y. YANG,Weixian ZHANG,Weile YAN

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 813-822 doi: 10.1007/s11783-015-0784-z

摘要: Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a facile method to screen the reactivity of candidate nZVI materials produced using different methods or under varying synthesis conditions has yet been established. In this study, four reaction parameters were adjusted in the preparation of borohydride-reduced nZVI. The reductive properties of the resultant nanoparticles were assayed independently using two model aqueous contaminants, Cu(II) and nitrate. The results confirm that the reductive reactivity of nZVI is most sensitive to the initial concentration of iron precursor, borohydride feed rate, and the loading ratio of borohydride to ferric ion during particle synthesis. Solution mixing speed, in contrast, carries a relative small weight on the reactivity of nZVI. The two probing reactions (i.e., Cu(II) and nitrate reduction) are able to generate consistent and quantitative inference about the mass-normalized surface activity of nZVI. However, the nitrate assay is valid in dilute aqueous solutions only (50 mg·L or lower) due to accelerated deactivation of iron surface at elevated nitrate concentrations. Additional insights including the structural and chemical makeup of nZVI can be garnered from Cu(II) reduction assessments. The reactivity assays investigated in this study can facilitate screening of candidate materials or optimization of nZVI production parameters, which complement some of the more sophisticated but less chemically specific material characterization methods used in the nZVI research.

关键词: iron nanoparticles     nanoscale iron particles (nZVI)     synthesis     characterization     Cu(II) reduction     nitrate reduction    

Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1372-4

摘要:

• The MCNZVI is prepared as an interesting material for PS activation.

关键词: MCNZVI     Core-shell structure     Reactive Black 5     Persulfate     Mechanism    

Nanoscale Zero-Valent Iron (nZVI) for Heavy Metal Wastewater Treatment: A Perspective

Shaolin Li,Lei Li,Weixian Zhang,

《工程(英文)》 doi: 10.1016/j.eng.2023.08.012

摘要: Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater (HMW) worldwide annually, posing a severe challenge to conventional wastewater treatment plants and harming the environment. HMW is traditionally treated via chemical precipitation using lime, caustic, or sulfide, but the effluents do not meet the increasingly stringent discharge standards. This issue has spurred an increase in research and the development of innovative treatment technologies, among which those using nanoparticles receive particular interest. Among such initiatives, treatment using nanoscale zero-valent iron (nZVI) is one of the best developed. While nZVI is already well known for its site-remediation use, this perspective highlights its application in HMW treatment with metal recovery. We demonstrate several advantages of nZVI in this wastewater application, including its multifunctionality in sequestrating a wide array of metal(loid)s (> 30 species); its capability to capture and enrich metal(loid)s at low concentrations (with a removal capacity reaching 500 mg·g–1 nZVI); and its operational convenience due to its unique hydrodynamics. All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry. We also present the first engineering practice of this application, which has treated millions of cubic meters of HMW and recovered tons of valuable metals (e.g., Cu and Au). It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste.

关键词: Nanoscale zero-valent iron     Wastewater     Heavy metal     Resource recovery    

The inactivation of bacteriophages MS2 and PhiX174 by nanoscale zero-valent iron: Resistance difference and mechanisms

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1529-4

摘要:

• The resistance of phage PhiX174 to nZVI was much stronger than that of MS2.

关键词: Nanoscale zero-valent iron (nZVI)     MS2     PhiΧ174     Resistance     Inactivation     Pathogenic microorganisms    

An adsorption study of

Lingxiao FU, Jianhua ZU, Enxi GU, Huan WANG, Linfeng HE

《能源前沿(英文)》 2020年 第14卷 第1期   页码 11-17 doi: 10.1007/s11708-019-0634-y

摘要: Nanoscale zero-valent iron (nZVI) supported on D001 resin (D001-nZVI) was synthesized for adsorption of high solubility and mobility radionuclide Tc. Re(VII), a chemical substitute for Tc, was utilized in batch experiments to investigate the feasibility and adsorption mechanism toward Tc(VII). Factors (pH, resin dose) affecting Re(VII) adsorption were studied. The high adsorption efficiency of Re(VII) at pH= 3 and the solid-liquid ratio of 20 g/L. X-ray diffraction patterns revealed the reduction of into ReO immobilized in D001-nZVI. Based on the optimum conditions of Re(VII) adsorption, the removal experiments of Tc(VII) were conducted where the adsorption efficiency of Tc(VII) can reach 94%. Column experiments showed that the Thomas model gave a good fit to the adsorption process of Re(VII) and the maximum dynamic adsorption capacity was 0.2910 mg/g.

关键词: technetium     nanoscale zero-valent iron (nZVI)     D001 resin     adsorption    

Cation exchange resin supported nanoscale zero-valent iron for removal of phosphorus in rainwater runoff

XIE Bangmi,ZUO Jiane,GAN Lili,LIU Fenglin,WANG Kaijun

《环境科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 463-470 doi: 10.1007/s11783-013-0575-3

摘要: Self-made cation exchange resin supported nanoscale zero-valent iron (R-nZVI) was used to remove phosphorus in rainwater runoff. 80% of phosphorus in rainwater runoff from grassland was removed with an initial concentration of 0.72 mg·L phosphorus when the dosage of R-nZVI is 8 g per liter rainwater, while only 26% of phosphorus was removed when using cation exchange resin without supported nanoscale zero-valent iron under the same condition. The adsorption capacity of R-nZVI increased up to 185 times of that of the cation exchange resin at a saturated equilibrium phosphorous concentration of 0.42 mg·L . Various techniques were implemented to characterize the R-nZVI and explore the mechanism of its removal of phosphate. Scanning electron microscopy (SEM) indicated that new crystal had been formed on the surface of R-nZVI. The result from inductive coupled plasma (ICP) indicated that 2.1% of nZVI was loaded on the support material. The specific surface area was increased after the load of nanoscale zero-valent iron (nZVI), according to the measurement of BET-N method. The result of specific surface area analysis also proved that phosphorus was removed mainly through chemical adsorption process. X-ray photoelectron spectroscopy (XPS) analysis showed that the new product obtained from chemical reaction between phosphate and iron was ferrous phosphate.

关键词: nanoscale zero-valent iron(R-nZVI)     cation exchange resin     rainwater runoff     phosphorus adsorption    

生物质制备纳米零价铁生物炭的铁相转移和原位还原机制 Article

卓胜男, 任宏宇, 谢国俊, 邢德峰, 刘冰峰

《工程(英文)》 2023年 第21卷 第2期   页码 124-134 doi: 10.1016/j.eng.2021.07.012

摘要:

纳米零价铁生物炭(nZVI-BC)作为一种由废弃生物质制备的环境友好型材料,可有效解决生物质转化和环境污染问题。然而,复杂的生物质/生物炭改性过程阻碍了它们的进一步生产和应用。在本研究中,一种绿色溶剂聚乙二醇400(PEG400)被引入FeCl3⋅6H2O改性水稻秸秆(RS)的反应体系中,改性后的RS通过一步热解法被转化为nZVI-BCFe2O3在热解产生的还原气体和无定形碳的帮助下被还原,最终形成nZVI-BC。将该方法制备的nZVI-BC 用于染料刚果红的催化高级氧化去除,结果表明,nZVI-BC 具有快速的吸附能力(5 min 时吸附效果为70.6%)和高效的催化降解能力(60 min 时催化降解90%)。本研究为nZVI-BC的制备提供了一种新的策略,为其规模化生产和应用奠定了基础。

关键词: 生物质转化     纳米零价铁生物炭     原位热解     铁相转移    

标题 作者 时间 类型 操作

Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison with nZVI

Kubra Ulucan-Altuntas, Eyup Debik

期刊论文

Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline

Xiangyu Wang, Weitao Lian, Xin Sun, Jun Ma, Ping Ning

期刊论文

Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment

Yanlai HAN,Michael D. Y. YANG,Weixian ZHANG,Weile YAN

期刊论文

Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive

期刊论文

Nanoscale Zero-Valent Iron (nZVI) for Heavy Metal Wastewater Treatment: A Perspective

Shaolin Li,Lei Li,Weixian Zhang,

期刊论文

The inactivation of bacteriophages MS2 and PhiX174 by nanoscale zero-valent iron: Resistance difference and mechanisms

期刊论文

An adsorption study of

Lingxiao FU, Jianhua ZU, Enxi GU, Huan WANG, Linfeng HE

期刊论文

Cation exchange resin supported nanoscale zero-valent iron for removal of phosphorus in rainwater runoff

XIE Bangmi,ZUO Jiane,GAN Lili,LIU Fenglin,WANG Kaijun

期刊论文

生物质制备纳米零价铁生物炭的铁相转移和原位还原机制

卓胜男, 任宏宇, 谢国俊, 邢德峰, 刘冰峰

期刊论文