资源类型

期刊论文 6

年份

2023 1

2022 1

2015 1

2014 1

2013 1

2012 1

关键词

CO2利用 1

宏转录组 1

微生物电化学技术 1

生物阴极 1

胞外电子传递 1

展开 ︾

检索范围:

排序: 展示方式:

Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell

Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 624-630 doi: 10.1007/s11783-013-0584-2

摘要: A biocathode with microbial catalyst in place of a noble metal was successfully developed for hydrogen evolution in a microbial electrolysis cell (MEC). The strategy for fast biocathode cultivation was demonstrated. An exoelectrogenic reaction was initially extended with an H -full atmosphere to enrich H -utilizing bacteria in a MEC bioanode. This bioanode was then inversely polarized with an applied voltage in a half-cell to enrich the hydrogen-evolving biocathode. The electrocatalytic hydrogen evolution reaction (HER) kinetics of the biocathode MEC could be enhanced by increasing the bicarbonate buffer concentration from 0.05 mol·L to 0.5 mol·L and/or by decreasing the cathode potential from -0.9 V to -1.3 V vs. a saturated calomel electrode (SCE). Within the tested potential region in this study, the HER rate of the biocathode MEC was primarily influenced by the microbial catalytic capability. In addition, increasing bicarbonate concentration enhances the electric migration rate of proton carriers. As a consequence, more mass H can be released to accelerate the biocathode-catalyzed HER rate. A hydrogen production rate of 8.44 m ·m ·d with a current density of 951.6 A·m was obtained using the biocathode MEC under a cathode potential of -1.3 V vs. SCE and 0.4 mol·L bicarbonate. This study provided information on the optimization of hydrogen production in biocathode MEC and expanded the practical applications thereof.

关键词: microbial electrolysis cell (MEC)     biocathode     hydrogen production     bicarbonate     cathode potential    

Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery

Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU

《环境科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 569-574 doi: 10.1007/s11783-011-0335-1

摘要: A sediment microbial fuel cell (SMFC) with three dimensional floating biocathode (FBC) was developed for the electricity generation and biodegradation of sediment organic matter in order to avoid negative effect of dissolved oxygen (DO) depletion in aqueous environments on cathode performance and search cost-effective cathode materials. The biocathode was made from graphite granules with microbial attachment to replace platinum (Pt)-coated carbon paper cathode in a laboratory-scale SMFC (3 L in volume) filled with river sediment (organic content 49±4 g·kg dry weight). After start-up of 10 days, the maximum power density of 1.00W·m (based on anode volume) was achieved. The biocathode was better than carbon paper cathode catalyzed by Pt. The attached biofilm on cathode enhanced power generation significantly. The FBC enhanced SMFC performance further in the presence aeration. The SMFC was continuously operated for an over 120-day period. Power generation peaked within 24 days, declined gradually and stabilized at a level of 1/6 peak power output. At the end, the sediment organic matter content near the anode was removed by 29% and the total electricity generated was equal to 0.251 g of chemical oxygen demand (COD) removed.

关键词: microbial fuel cell (MFC)     sediment     biocathode     electricity generation     organic removal    

Electricity-driven ammonia oxidation and acetate production in microbial electrosynthesis systems

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-021-1476-5

摘要:

• MES was constructed for simultaneous ammonia removal and acetate production.

关键词: Biocathode     Carbon dioxide     Electrochemical oxidation     Graphite anode     Boron-doped diamond    

Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode

Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 913-919 doi: 10.1007/s11783-013-0583-3

摘要: A scaled up microbial fuel cell (MFC) of a 50 L volume was set up with an oxic-anoxic two-stage biocathode and activated semicoke packed electrodes to achieve simultaneous power generation and nitrogen and organic matter removals. An average maximum power density of 43.1 W·m was obtained in batch operating mode. By adjusting the two external resistances, the denitrification in the A-MFC and power production in the O-MFC could be enhanced. In continuous mode, when the hydraulic retention times were set at 6 h, 8 h and 12 h, the removal efficiencies of COD, and total nitrogen (TN) were higher than 95%, 97%, and 84%, respectively. Meanwhile the removal loads for COD, and TN were10, 0.37 and 0.4 kg·(m ·d) , respectively.

关键词: microbial fuel cell (MFC)     oxic-anoxic two stage biocathode     denitrifying    

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1084-1095 doi: 10.1007/s11783-015-0805-y

摘要: Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L ?h for Cu(II) at an initial concentration of 50 mg?L and 5.3±0.4 mg?L h for Co(II) at an initial 40 mg?L were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L ?h ) and Co(II) (6.4 mg?L ?h ) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol COD). Phylogenetic analysis on the biocathodes indicates dominantly accounted for 67.9% of the total reads, followed by (14.0%), (6.1%), (2.5%), (1.4%), and (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.

关键词: biocathode     microbial electrolysis cell     microbial fuel cell     Cu(II) removal     Co(II) removal    

流动电极微生物电合成提高产物生成速率及降低能量消耗 Article

褚娜, 王东麟, 王厚锋, 梁勤军, 常佳丽, 高瑜, 蒋永, 曾建雄

《工程(英文)》 2023年 第25卷 第6期   页码 157-167 doi: 10.1016/j.eng.2021.09.015

摘要:

微生物电合成(microbial electrosynthesis, MES)利用可再生电力驱动微生物固定CO2合成化学品,在推进碳循环经济中具有一定潜力,受到广泛关注。但是,很少有研究通过高效反应器设计来促进产乙酸并降低能耗。本研究中,新型流动电极MES反应器的总产乙酸速率[(16 ± 1) g·m−2·d−1]比无粉末活性炭(powder activated carbon, PAC)对照[(8 ± 3) g·m−2·d−1]高两倍。流动电极MES反应器的库仑效率为43.5% ± 3.1%,能量消耗为(0.020 ± 0.005) kWh·g−1,产乙酸的能量效率为18.7% ± 1.3%。基于PAC的流动电极能够降低水跨膜通量、传质阻力,但是对装置电压、流变行为、乙酸吸附的影响较小。流动电极MES反应器中,能量代谢相关基因高表达,Acetobacterium的丰度增加。MES反应器中同时存在用于碳固定的还原性乙酰辅酶A途径(Wood-Ljungdahl pathway, WLP)与还原性三羧酸循环途径(reductive citric acid cycle, rTCA)。堆叠型流动电极MES中的乙酸浓度达7.0 g·L−1。本研究提供一种构建可扩展MES反应器的新方法,促进CO2利用以及产物生成。

关键词: CO2利用     生物阴极     宏转录组     微生物电化学技术     胞外电子传递    

标题 作者 时间 类型 操作

Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell

Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG

期刊论文

Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery

Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU

期刊论文

Electricity-driven ammonia oxidation and acetate production in microbial electrosynthesis systems

期刊论文

Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode

Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG

期刊论文

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

期刊论文

流动电极微生物电合成提高产物生成速率及降低能量消耗

褚娜, 王东麟, 王厚锋, 梁勤军, 常佳丽, 高瑜, 蒋永, 曾建雄

期刊论文