资源类型

期刊论文 6

年份

2023 2

2022 1

2015 1

2011 2

关键词

检索范围:

排序: 展示方式:

Chemisorption solid materials for hydrogen storage near ambient temperature: a review

Yiheng ZHANG, Shaofei WU, Liwei WANG, Xuefeng ZHANG

《能源前沿(英文)》 2023年 第17卷 第1期   页码 72-101 doi: 10.1007/s11708-022-0835-7

摘要: Solid chemisorption technologies for hydrogen storage, especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from −20 to 100°C, have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality. However, there are several challenges to be solved at near ambient temperature, i.e., unclear hydrogen storage mechanism, low sorption capacity, poor sorption kinetics, and complicated synthetic procedures. In this review, the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed. The interaction between hydrogen and materials is analyzed, including the microscopic, thermodynamic, and mechanical properties. Based on the classification of hydrogen storage metals, the operation temperature zone and temperature shifting methods are discussed. A series of modification and reprocessing methods are summarized, including preparation, synthesis, simulation, and experimental analysis. Finally, perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.

关键词: hydrogen storage capacity     chemisorption     near-ambient-temperature     modification methods     alloy hydrides    

A two-stage deep freezing chemisorption cycle driven by low-temperature heat source

Yuanyang HU, Liwei WANG, Lu XU, Ruzhu WANG, Jeremiah KIPLAGAT, Jian WANG

《能源前沿(英文)》 2011年 第5卷 第3期   页码 263-269 doi: 10.1007/s11708-011-0152-z

摘要: A two-stage chemisorption cycle suitable for deep-freezing application driven by low- temperature heat source was proposed. Through two-stage desorption processes, the two-stage cycle can break through the limitations of the heating temperature and ambient cooling temperature. The two-stage cycle based on CaCl /BaCl -NH working pair can utilize the heat source with a temperature of above 75°C, and simultaneously realize deep-freezing all the year round. Experimental results and performance prediction show that the adsorption quantity of calcium, theoretical coefficient of performance (COP) and optimized specific cooling power (SCP) of the CaCl /BaCl -NH chemisorption system are 0.489 kg/kg (salt), 0.24 and 120.7 W/kg, when the heating temperature, ambient cooling temperature, pseudo-evaporating temperature and mass ratio of reacting salt and expanded graphite are 85, 30, -20, and 4∶1, respectively.

关键词: adsorption     freezing     desorption     heat source    

Mechanistic insights into the selective photocatalytic degradation of dyes over TiO/ZSM-11

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1701-5

摘要:

● TiO2/ZSM-11 was prepared by a facile solid state dispersion method.

关键词: Selective dye degradation     Photocatalysis     TiO2     ZSM-11     Chemisorption    

Effect of particle size on coal char----NO reaction

Xiumin JIANG, Xiangyong HUANG, Jiaxun LIU, Chaoqun ZHANG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 221-228 doi: 10.1007/s11708-011-0146-x

摘要: Surface nitrogen complex formation upon reaction of coal char with NO at 600°C was studied by X-ray photoelectron spectroscopy. Particle size had a noticeable effect on the magnitude of changes, which was observed on the surface of the coal char in the nitrogen functional group. The surface increased its -NO, pyridine-N-oxide, and -NO functional group contents with a decrease in particle size. The chemisorption processes of NO molecules on the char were simulated using the ab initio Hartree–Fock method and density functional theory. Molecular modeling was applied to determine the thermodynamics of the reactions. Mechanisms were proposed to explain the formation of the -NO, pyridine-N-oxide, and -NO functional groups at 600°C.

关键词: NO reduction     chemisorption     particle size     X-ray photoelectron spectroscopy     density functional theory (DFT)    

Multi-stage ammonia production for sorption selective catalytic reduction of NO

Chen ZHANG, Guoliang AN, Liwei WANG, Shaofei WU

《能源前沿(英文)》 2022年 第16卷 第5期   页码 840-851 doi: 10.1007/s11708-021-0797-1

摘要: Sorption selective catalytic reduction of nitrogen oxides (NOx) (sorption-SCR) has ever been proposed for replacing commercial urea selective catalytic reduction of NOx (urea-SCR), while only the single-stage sorption cycle is hitherto adopted for sorption-SCR. Herein, various multi-stage ammonia production cycles is built to solve the problem of relative high starting temperature with ammonia transfer (AT) unit and help detect the remaining ammonia in ammonia storage and delivery system (ASDS) with ammonia warning (AW) unit. Except for the single-stage ammonia production cycle with MnCl2, other sorption-SCR strategies all present overwhelming advantages over urea-SCR considering the much higher NOx conversion driven by the heat source lower than 100°C and better matching characteristics with low-temperature catalysts. Furthermore, the required mass of sorbent for each type of sorption-SCR is less than half of the mass of AdBlue for urea-SCR. Therefore, the multifunctional multi-stage sorption-SCR can realize compact and renewable ammonia storage and delivery with low thermal energy consumption and high NOx conversion, which brings a bright potential for efficient commercial de-NOx technology.

关键词: selective catalytic reduction (SCR)     nitrogen oxides (NOx)     ammonia     composite sorbent     chemisorption    

Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene

Xinxiang Cao,Arash Mirjalili,James Wheeler,Wentao Xie,Ben W.-L. Jang

《化学科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 442-449 doi: 10.1007/s11705-015-1547-x

摘要: Galvanic replacement, co-impregnation and sequential impregnation have been employed to prepare Pd-Cu bimetallic catalysts with less than 1 wt-% Cu and ca. 0.03 wt-% Pd for selective hydrogenation of acetylene in excess ethylene. High angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and H chemisorption results confirmed that Pd-Cu single-atom alloy structures were constructed in all three bimetallic catalysts. Catalytic tests indicated that when the conversion of acetylene was above 99%, the selectivity of ethylene of these three single atom alloy catalysts was still more than 73%. Furthermore, the single atom alloy catalyst prepared by sequential incipient wetness impregnation was found to have the best stability among the three procedures used.

关键词: H2 pulse chemisorption     palladium-copper bimetallic catalyst     single atom alloy     acetylene hydrogenation     HAADF-STEM    

标题 作者 时间 类型 操作

Chemisorption solid materials for hydrogen storage near ambient temperature: a review

Yiheng ZHANG, Shaofei WU, Liwei WANG, Xuefeng ZHANG

期刊论文

A two-stage deep freezing chemisorption cycle driven by low-temperature heat source

Yuanyang HU, Liwei WANG, Lu XU, Ruzhu WANG, Jeremiah KIPLAGAT, Jian WANG

期刊论文

Mechanistic insights into the selective photocatalytic degradation of dyes over TiO/ZSM-11

期刊论文

Effect of particle size on coal char----NO reaction

Xiumin JIANG, Xiangyong HUANG, Jiaxun LIU, Chaoqun ZHANG

期刊论文

Multi-stage ammonia production for sorption selective catalytic reduction of NO

Chen ZHANG, Guoliang AN, Liwei WANG, Shaofei WU

期刊论文

Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene

Xinxiang Cao,Arash Mirjalili,James Wheeler,Wentao Xie,Ben W.-L. Jang

期刊论文