资源类型

期刊论文 2

年份

2016 2

关键词

检索范围:

排序: 展示方式:

Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea

null

《医学前沿(英文)》 2016年 第10卷 第3期   页码 237-249 doi: 10.1007/s11684-016-0464-9

摘要:

Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea.

关键词: inner ear     cochlea     hair cell     regeneration     Wnt     Notch     signaling pathways    

Spatiotemporal expression of Ezh2 in the developing mouse cochlear sensory epithelium

null

《医学前沿(英文)》 2016年 第10卷 第3期   页码 330-335 doi: 10.1007/s11684-016-0459-6

摘要:

The enhancer of zeste 2 polycomb repressive complex 2 subunit (Ezh2) is a histone-lysine N-methyltransferase enzyme that participates in DNA methylation. Ezh2 has also been reported to play crucial roles in stem cell proliferation and differentiation. However, the detailed expression profile of Ezh2 during mouse cochlear development has not been investigated. Here, we examined the spatiotemporal expression of Ezh2 in the cochlea during embryonic and postnatal development. Ezh2 expression began to be observed in the whole otocyst nuclei at embryonic day 9.5 (E9.5). At E12.5, Ezh2 was expressed in the nuclei of the cochlear prosensory epithelium. At E13.5 and E15.5, Ezh2 was expressed from the apical to the basal turns in the nuclei of the differentiating cochlear epithelium. At postnatal day (P) 0 and 7, the Ezh2 expression was located in the nuclei of the cochlear epithelium in all three turns and could be clearly seen in outer and inner hair cells, supporting cells, the stria vascularis, and spiral ganglion cells. Ezh2 continued to be expressed in the cochlear epithelium of adult mice. Our results provide the basic Ezh2 expression pattern and might be useful for further investigating the detailed role of Ezh2 during cochlear development.

关键词: polycomb repressive complex     Ezh2     expression     inner ear     cochlea     development    

标题 作者 时间 类型 操作

Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea

null

期刊论文

Spatiotemporal expression of Ezh2 in the developing mouse cochlear sensory epithelium

null

期刊论文