资源类型

期刊论文 468

会议视频 12

年份

2023 55

2022 87

2021 59

2020 54

2019 47

2018 24

2017 31

2016 12

2015 14

2014 10

2013 7

2012 3

2011 9

2010 11

2009 8

2008 4

2007 8

2006 4

2005 4

2004 1

展开 ︾

关键词

机器学习 27

人工智能 14

深度学习 13

关键技术 4

岩爆 4

代理模型 2

冲刷防护 2

勘探开发 2

强化学习 2

扬矿管 2

材料设计 2

桥梁隧道 2

深井开采 2

深度神经网络 2

深海 2

深海采矿 2

深部裂缝带 2

结构健康监测 2

高含硫 2

展开 ︾

检索范围:

排序: 展示方式:

A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0673-7

摘要: Convolutional neural network (CNN) has achieved remarkable applications in fault diagnosis. However, the tuning aiming at obtaining the well-trained CNN model is mainly manual search. Tuning requires considerable experiences on the knowledge on CNN training and fault diagnosis, and is always time consuming and labor intensive, making the automatic hyper parameter optimization (HPO) of CNN models essential. To solve this problem, this paper proposes a novel automatic CNN (ACNN) for fault diagnosis, which can automatically tune its three key hyper parameters, namely, learning rate, batch size, and L2-regulation. First, a new deep reinforcement learning (DRL) is developed, and it constructs an agent aiming at controlling these three hyper parameters along with the training of CNN models online. Second, a new structure of DRL is designed by combining deep deterministic policy gradient and long short-term memory, which takes the training loss of CNN models as its input and can output the adjustment on these three hyper parameters. Third, a new training method for ACNN is designed to enhance its stability. Two famous bearing datasets are selected to evaluate the performance of ACNN. It is compared with four commonly used HPO methods, namely, random search, Bayesian optimization, tree Parzen estimator, and sequential model-based algorithm configuration. ACNN is also compared with other published machine learning (ML) and deep learning (DL) methods. The results show that ACNN outperforms these HPO and ML/DL methods, validating its potential in fault diagnosis.

关键词: deep reinforcement learning     hyper parameter optimization     convolutional neural network     fault diagnosis    

Deep reinforcement learning-based critical element identification and demolition planning of frame structures

Shaojun ZHU; Makoto OHSAKI; Kazuki HAYASHI; Shaohan ZONG; Xiaonong GUO

《结构与土木工程前沿(英文)》 2022年 第16卷 第11期   页码 1397-1414 doi: 10.1007/s11709-022-0860-y

摘要: This paper proposes a framework for critical element identification and demolition planning of frame structures. Innovative quantitative indices considering the severity of the ultimate collapse scenario are proposed using reinforcement learning and graph embedding. The action is defined as removing an element, and the state is described by integrating the joint and element features into a comprehensive feature vector for each element. By establishing the policy network, the agent outputs the Q value for each action after observing the state. Through numerical examples, it is confirmed that the trained agent can provide an accurate estimation of the Q values, and handle problems with different action spaces owing to utilization of graph embedding. Besides, different behaviors can be learned by varying hyperparameters in the reward function. By comparing the proposed method and the conventional sensitivity index-based methods, it is demonstrated that the computational cost is considerably reduced because the reinforcement learning model is trained offline. Besides, it is proved that the Q values produced by the reinforcement learning agent can make up for the deficiencies of existing indices, and can be directly used as the quantitative index for the decision-making for determining the most expected collapse scenario, i.e., the sequence of element removals.

关键词: progressive collapse     alternate load path     demolition planning     reinforcement learning     graph embedding    

人在回路的深度强化学习算法及其在自动驾驶智能决策中的应用 Article

吴京达, 黄志宇, 胡中旭, 吕辰

《工程(英文)》 2023年 第21卷 第2期   页码 75-91 doi: 10.1016/j.eng.2022.05.017

摘要:

由于机器学习智力和能力有限,它目前仍无法处理各种情况,因此不能在现实应用中完全取代人类。因为人类在复杂场景中表现出稳健性和适应性,所以将人类引入人工智能(AI)的训练循环并利用人类智慧进一步提升机器学习算法变得至关重要。本研究开发了一种基于实时人工指导(Hug)的深度强化学习(DRL)方法,用于端到端自动驾驶案例中的策略训练。通过新设计的人类与自动化之间的控制转移机制,人类能够在模型训练过程中实时干预和纠正智能体的不合理行为。基于这种人机回环的指导机制,本研究开发一种基于修正策略和价值网络的改良的动作-评价架构(actor-critic architecture)。所提出的Hug-DRL的快速收敛允许实时的人工指导行为融合到智能体的训练循环中,进一步提高了DRL的效率和性能。本研究通过40名受试者的人机回环实验对开发的方法进行了验证,并与其他最先进的学习方法进行了比较。结果表明,该方法可以在人工指导下有效地提高DRL算法的训练效率和性能,且对参与者的专业知识或经验没有硬性要求。

关键词: 人机回环AI     深度强化学习     人工指导     自动驾驶    

Automated synthesis of steady-state continuous processes using reinforcement learning

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 288-302 doi: 10.1007/s11705-021-2055-9

摘要: Automated flowsheet synthesis is an important field in computer-aided process engineering. The present work demonstrates how reinforcement learning can be used for automated flowsheet synthesis without any heuristics or prior knowledge of conceptual design. The environment consists of a steady-state flowsheet simulator that contains all physical knowledge. An agent is trained to take discrete actions and sequentially build up flowsheets that solve a given process problem. A novel method named SynGameZero is developed to ensure good exploration schemes in the complex problem. Therein, flowsheet synthesis is modelled as a game of two competing players. The agent plays this game against itself during training and consists of an artificial neural network and a tree search for forward planning. The method is applied successfully to a reaction-distillation process in a quaternary system.

关键词: automated process synthesis     flowsheet synthesis     artificial intelligence     machine learning     reinforcement learning    

MSWNet: A visual deep machine learning method adopting transfer learning based upon ResNet 50 for municipal

《环境科学与工程前沿(英文)》 2023年 第17卷 第6期 doi: 10.1007/s11783-023-1677-1

摘要:

● MSWNet was proposed to classify municipal solid waste.

关键词: Municipal solid waste sorting     Deep residual network     Transfer learning     Cyclic learning rate     Visualization    

Dynamic prediction of moving trajectory in pipe jacking: GRU-based deep learning framework

《结构与土木工程前沿(英文)》   页码 994-1010 doi: 10.1007/s11709-023-0942-5

摘要: The moving trajectory of the pipe-jacking machine (PJM), which primarily determines the end quality of jacked tunnels, must be controlled strictly during the entire jacking process. Developing prediction models to support drivers in performing rectifications in advance can effectively avoid considerable trajectory deviations from the designed jacking axis. Hence, a gated recurrent unit (GRU)-based deep learning framework is proposed herein to dynamically predict the moving trajectory of the PJM. In this framework, operational data are first extracted from a data acquisition system; subsequently, they are preprocessed and used to establish GRU-based multivariate multistep-ahead direct prediction models. To verify the performance of the proposed framework, a case study of a large pipe-jacking project in Shanghai and comparisons with other conventional models (i.e., long short-term memory (LSTM) network and recurrent neural network (RNN)) are conducted. In addition, the effects of the activation function and input time-step length on the prediction performance of the proposed framework are investigated and discussed. The results show that the proposed framework can dynamically and precisely predict the PJM moving trajectory during the pipe-jacking process, with a minimum mean absolute error and root mean squared error (RMSE) of 0.1904 and 0.5011 mm, respectively. The RMSE of the GRU-based models is lower than those of the LSTM- and RNN-based models by 21.46% and 46.40% at the maximum, respectively. The proposed framework is expected to provide an effective decision support for moving trajectory control and serve as a foundation for the application of deep learning in the automatic control of pipe jacking.

关键词: dynamic prediction     moving trajectory     pipe jacking     GRU     deep learning    

Survey on deep learning for pulmonary medical imaging

Jiechao Ma, Yang Song, Xi Tian, Yiting Hua, Rongguo Zhang, Jianlin Wu

《医学前沿(英文)》 2020年 第14卷 第4期   页码 450-469 doi: 10.1007/s11684-019-0726-4

摘要: As a promising method in artificial intelligence, deep learning has been proven successful in several domains ranging from acoustics and images to natural language processing. With medical imaging becoming an important part of disease screening and diagnosis, deep learning-based approaches have emerged as powerful techniques in medical image areas. In this process, feature representations are learned directly and automatically from data, leading to remarkable breakthroughs in the medical field. Deep learning has been widely applied in medical imaging for improved image analysis. This paper reviews the major deep learning techniques in this time of rapid evolution and summarizes some of its key contributions and state-of-the-art outcomes. The topics include classification, detection, and segmentation tasks on medical image analysis with respect to pulmonary medical images, datasets, and benchmarks. A comprehensive overview of these methods implemented on various lung diseases consisting of pulmonary nodule diseases, pulmonary embolism, pneumonia, and interstitial lung disease is also provided. Lastly, the application of deep learning techniques to the medical image and an analysis of their future challenges and potential directions are discussed.

关键词: deep learning     neural networks     pulmonary medical image     survey    

Digital image correlation-based structural state detection through deep learning

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 45-56 doi: 10.1007/s11709-021-0777-x

摘要: This paper presents a new approach for automatical classification of structural state through deep learning. In this work, a Convolutional Neural Network (CNN) was designed to fuse both the feature extraction and classification blocks into an intelligent and compact learning system and detect the structural state of a steel frame; the input was a series of vibration signals, and the output was a structural state. The digital image correlation (DIC) technology was utilized to collect vibration information of an actual steel frame, and subsequently, the raw signals, without further pre-processing, were directly utilized as the CNN samples. The results show that CNN can achieve 99% classification accuracy for the research model. Besides, compared with the backpropagation neural network (BPNN), the CNN had an accuracy similar to that of the BPNN, but it only consumes 19% of the training time. The outputs of the convolution and pooling layers were visually displayed and discussed as well. It is demonstrated that: 1) the CNN can extract the structural state information from the vibration signals and classify them; 2) the detection and computational performance of the CNN for the incomplete data are better than that of the BPNN; 3) the CNN has better anti-noise ability.

关键词: structural state detection     deep learning     digital image correlation     vibration signal     steel frame    

Recent development on statistical methods for personalized medicine discovery

null

《医学前沿(英文)》 2013年 第7卷 第1期   页码 102-110 doi: 10.1007/s11684-013-0245-7

摘要:

It is well documented that patients can show significant heterogeneous responses to treatments so the best treatment strategies may require adaptation over individuals and time. Recently, a number of new statistical methods have been developed to tackle the important problem of estimating personalized treatment rules using single-stage or multiple-stage clinical data. In this paper, we provide an overview of these methods and list a number of challenges.

关键词: dynamic treatment regimes     personalized medicine     reinforcement learning     Q-learning    

基于多智能体深度强化学习的工业无线网络端边协同资源分配 Research Article

刘晓宇1,2,3,4,许驰1,2,3,于海斌1,2,3,曾鹏1,2,3

《信息与电子工程前沿(英文)》 2022年 第23卷 第1期   页码 47-60 doi: 10.1631/FITEE.2100331

摘要: 边缘人工智能通过协同利用设备侧和边缘侧有限的网络、计算资源,赋能工业无线网络以支持复杂和动态工业任务。面向资源受限的工业无线网络,我们提出一种基于多智能体深度强化学习的资源分配(MADRL-RA)算法,实现了端边协同资源分配,支持计算密集型、时延敏感型工业应用。首先,建立了端边协同的工业无线网络系统模型,将具有感知能力的工业设备作为自学习的智能代理。然后,采用马尔可夫决策过程对端边资源分配问题进行形式化描述,建立关于时延和能耗联合优化的最小系统开销问题。接着,利用多智能体深度强化学习克服状态空间维灾,同时学习关于计算决策、算力分配和传输功率的有效资源分配策略。为了打破训练数据的时间相关性,同时加速MADRL-RA学习过程,设计了一种带经验权重的经验回放方法,对经验进行分类存储和采样。在此基础上,提出步进的ε-贪婪方法来平衡智能代理对经验的利用与探索。最后,通过大量对比实验,验证了MADRL-RA算法相较于多种基线算法的有效性。实验结果表明,MADRL-RA收敛速度快,能够学习到有效资源分配策略以实现最小系统开销。

关键词: 多智能体深度强化学习;端边协同;工业无线网络;时延;能耗    

Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis

《医学前沿(英文)》 2022年 第16卷 第3期   页码 496-506 doi: 10.1007/s11684-021-0828-7

摘要: The fracture risk of patients with diabetes is higher than those of patients without diabetes due to hyperglycemia, usage of diabetes drugs, changes in insulin levels, and excretion, and this risk begins as early as adolescence. Many factors including demographic data (such as age, height, weight, and gender), medical history (such as smoking, drinking, and menopause), and examination (such as bone mineral density, blood routine, and urine routine) may be related to bone metabolism in patients with diabetes. However, most of the existing methods are qualitative assessments and do not consider the interactions of the physiological factors of humans. In addition, the fracture risk of patients with diabetes and osteoporosis has not been further studied previously. In this paper, a hybrid model combining XGBoost with deep neural network is used to predict the fracture risk of patients with diabetes and osteoporosis, and investigate the effect of patients’ physiological factors on fracture risk. A total of 147 raw input features are considered in our model. The presented model is compared with several benchmarks based on various metrics to prove its effectiveness. Moreover, the top 18 influencing factors of fracture risks of patients with diabetes are determined.

关键词: XGBoost     deep neural network     healthcare     risk prediction    

Efficient Identification of water conveyance tunnels siltation based on ensemble deep learning

Xinbin WU; Junjie LI; Linlin WANG

《结构与土木工程前沿(英文)》 2022年 第16卷 第5期   页码 564-575 doi: 10.1007/s11709-022-0829-x

摘要: The inspection of water conveyance tunnels plays an important role in water diversion projects. Siltation is an essential factor threatening the safety of water conveyance tunnels. Accurate and efficient identification of such siltation can reduce risks and enhance safety and reliability of these projects. The remotely operated vehicle (ROV) can detect such siltation. However, it needs to improve its intelligent recognition of image data it obtains. This paper introduces the idea of ensemble deep learning. Based on the VGG16 network, a compact convolutional neural network (CNN) is designed as a primary learner, called Silt-net, which is used to identify the siltation images. At the same time, the fully-connected network is applied as the meta-learner, and stacking ensemble learning is combined with the outputs of the primary classifiers to obtain satisfactory classification results. Finally, several evaluation metrics are used to measure the performance of the proposed method. The experimental results on the siltation dataset show that the classification accuracy of the proposed method reaches 97.2%, which is far better than the accuracy of other classifiers. Furthermore, the proposed method can weigh the accuracy and model complexity on a platform with limited computing resources.

关键词: water conveyance tunnels     siltation images     remotely operated vehicles     deep learning     ensemble learning     computer vision    

Multi-model ensemble deep learning method for intelligent fault diagnosis with high-dimensional samples

Xin ZHANG, Tao HUANG, Bo WU, Youmin HU, Shuai HUANG, Quan ZHOU, Xi ZHANG

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 340-352 doi: 10.1007/s11465-021-0629-3

摘要: Deep learning has achieved much success in mechanical intelligent fault diagnosis in recent years. However, many deep learning methods cannot fully extract fault information to recognize mechanical health states when processing high-dimensional samples. Therefore, a multi-model ensemble deep learning method based on deep convolutional neural network (DCNN) is proposed in this study to accomplish fault recognition of high-dimensional samples. First, several 1D DCNN models with different activation functions are trained through dimension reduction learning to obtain different fault features from high-dimensional samples. Second, the obtained features are constructed into 2D images with multiple channels through a conversion method. The integrated 2D feature images can effectively represent the fault characteristic contained in raw high-dimension vibration signals. Lastly, a 2D DCNN model with multi-layer convolution and pooling is used to automatically learn features from the 2D images and identify the fault mode of the mechanical equipment by adopting a softmax classifier. The proposed method, which is validated using the bearing public dataset of Case Western Reserve University, USA and a one-stage reduction gearbox dataset, has high recognition accuracy. Compared with other classical deep learning methods, the proposed fault diagnosis method has considerable improvements.

关键词: fault intelligent diagnosis     deep learning     deep convolutional neural network     high-dimensional samples    

Deep learning in digital pathology image analysis: a survey

Shujian Deng, Xin Zhang, Wen Yan, Eric I-Chao Chang, Yubo Fan, Maode Lai, Yan Xu

《医学前沿(英文)》 2020年 第14卷 第4期   页码 470-487 doi: 10.1007/s11684-020-0782-9

摘要: deep learning (DL) has achieved state-of-the-art performance in many digital pathology analysis tasks. Traditional methods usually require hand-crafted domain-specific features, and DL methods can learn representations without manually designed features. In terms of feature extraction, DL approaches are less labor intensive compared with conventional machine learning methods. In this paper, we comprehensively summarize recent DL-based image analysis studies in histopathology, including different tasks (e.g., classification, semantic segmentation, detection, and instance segmentation) and various applications (e.g., stain normalization, cell/gland/region structure analysis). DL methods can provide consistent and accurate outcomes. DL is a promising tool to assist pathologists in clinical diagnosis.

关键词: pathology     deep learning     segmentation     detection     classification    

Bridging finite element and deep learning: High-resolution stress distribution prediction in structural

Hamed BOLANDI; Xuyang LI; Talal SALEM; Vishnu Naresh BODDETI; Nizar LAJNEF

《结构与土木工程前沿(英文)》 2022年 第16卷 第11期   页码 1365-1377 doi: 10.1007/s11709-022-0882-5

摘要: Finite-element analysis (FEA) for structures has been broadly used to conduct stress analysis of various civil and mechanical engineering structures. Conventional methods, such as FEA, provide high fidelity results but require the solution of large linear systems that can be computationally intensive. Instead, Deep Learning (DL) techniques can generate results significantly faster than conventional run-time analysis. This can prove extremely valuable in real-time structural assessment applications. Our proposed method uses deep neural networks in the form of convolutional neural networks (CNN) to bypass the FEA and predict high-resolution stress distributions on loaded steel plates with variable loading and boundary conditions. The CNN was designed and trained to use the geometry, boundary conditions, and load as input to predict the stress contours. The proposed technique’s performance was compared to finite-element simulations using a partial differential equation (PDE) solver. The trained DL model can predict the stress distributions with a mean absolute error of 0.9% and an absolute peak error of 0.46% for the von Mises stress distribution. This study shows the feasibility and potential of using DL techniques to bypass FEA for stress analysis applications.

关键词: Deep Learning     finite element analysis     stress contours     structural components    

标题 作者 时间 类型 操作

A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis

期刊论文

Deep reinforcement learning-based critical element identification and demolition planning of frame structures

Shaojun ZHU; Makoto OHSAKI; Kazuki HAYASHI; Shaohan ZONG; Xiaonong GUO

期刊论文

人在回路的深度强化学习算法及其在自动驾驶智能决策中的应用

吴京达, 黄志宇, 胡中旭, 吕辰

期刊论文

Automated synthesis of steady-state continuous processes using reinforcement learning

期刊论文

MSWNet: A visual deep machine learning method adopting transfer learning based upon ResNet 50 for municipal

期刊论文

Dynamic prediction of moving trajectory in pipe jacking: GRU-based deep learning framework

期刊论文

Survey on deep learning for pulmonary medical imaging

Jiechao Ma, Yang Song, Xi Tian, Yiting Hua, Rongguo Zhang, Jianlin Wu

期刊论文

Digital image correlation-based structural state detection through deep learning

期刊论文

Recent development on statistical methods for personalized medicine discovery

null

期刊论文

基于多智能体深度强化学习的工业无线网络端边协同资源分配

刘晓宇1,2,3,4,许驰1,2,3,于海斌1,2,3,曾鹏1,2,3

期刊论文

Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis

期刊论文

Efficient Identification of water conveyance tunnels siltation based on ensemble deep learning

Xinbin WU; Junjie LI; Linlin WANG

期刊论文

Multi-model ensemble deep learning method for intelligent fault diagnosis with high-dimensional samples

Xin ZHANG, Tao HUANG, Bo WU, Youmin HU, Shuai HUANG, Quan ZHOU, Xi ZHANG

期刊论文

Deep learning in digital pathology image analysis: a survey

Shujian Deng, Xin Zhang, Wen Yan, Eric I-Chao Chang, Yubo Fan, Maode Lai, Yan Xu

期刊论文

Bridging finite element and deep learning: High-resolution stress distribution prediction in structural

Hamed BOLANDI; Xuyang LI; Talal SALEM; Vishnu Naresh BODDETI; Nizar LAJNEF

期刊论文