资源类型

期刊论文 192

会议视频 11

年份

2024 1

2023 19

2022 19

2021 18

2020 19

2019 13

2018 12

2017 15

2016 3

2015 5

2014 9

2013 8

2012 3

2011 5

2010 6

2009 9

2008 12

2007 9

2006 2

2005 1

展开 ︾

关键词

机理 3

高性能制造 3

微反应器 2

微合金化 2

显微硬度 2

膨化硝酸铵 2

采油工程 2

2021全球工程前沿 1

AD9954 1

SOFC 1

SUF钢板 1

个人热管理 1

主–客体络合 1

主动切换机制 1

乡村复兴 1

乡村文化 1

乡村规划 1

二氧化硅 1

井底裂缝连通 1

展开 ︾

检索范围:

排序: 展示方式:

Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene

Fatemeh ZAHIRI, Hamid ESKANDARI-NADDAF

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 821-830 doi: 10.1007/s11709-019-0518-6

摘要: Many studies have evaluated the effects of additives such as nano-silica (NS), micro-silica (MS) and polymer fibers on optimizing the mechanical properties of concrete, such as compressive strength. Nowadays, with progress in cement industry provides, it has become possible to produce cement type I with strength classes of 32.5, 42.5, and 52.5 MPa. On the one hand, the microstructure of cement has changed, and modified by NS, MS, and polymers; therefore it is very important to determine the optimal percentage of each additives for those CSCs. In this study, 12 mix designs containing different percentages of MS, NS, and polymer fibers in three cement strength classes(CSCs) (32.5, 42.5, and 52.5 MPa) were designed and constructed based on the mixture method. Results indicated the sensitivity of each CSCs can be different on the NS or MS in compressive strength of concrete. Consequently, strength classes have a significant effect on the amount of MS and NS in mix design of concrete. While, polymer fibers don’t have significant effect in compressive strength considering CSCs.

关键词: mixture method     compressive strength     nano-silica     micro-silica     polypropylene fibers    

Porous silica synthesis out of coal fly ash with no residue generation and complete silicon separation

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1712-2

摘要:

● Both amorphous and crystalline silicon are completely separated from coal fly ash.

关键词: Coal fly ash     Alkali fusion     Micro-/meso-porous Si     Zeolite MCM-48     Crystalline transformation    

Dispersion of “guava-like” silica/polyacrylate nanocomposite particles in polyacrylate matrix

QI Dongming, YANG Lei, WU Minghua, SHAO Jianzhong, BAO Yongzhong

《化学科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 127-134 doi: 10.1007/s11705-008-0033-0

摘要: A series of “guava-like” silica/polyacrylate nanocomposite particles with close silica content and different grafting degrees were prepared via mini-emulsion polymerization using 3-(trimethoxysilyl)propyl methacrylate (TSPM) modified silica/acrylate dispersion. The silica/polyacrylate composite particles were melt-mixed with unfilled polyacrylate (PA) resin to prepare corresponding silica/polyacrylate molded composites and the dispersion mechanism of these silica particles from the “guava-like” composite particles into polyacrylate matrix was studied. It was calculated that about 110 silica particles were accumulated in the bulk of every silica/polyacrylate composite latex particle. Both the solubility tests of silica/polyacrylate composite latex particles in tetrahydrofuran (THF) and the section transmission electron microscope (TEM) micrographs of silica/polyacrylate molded composites indicated that the grafting degree of silica particles played a crucial role in the dispersion of silica/polyacrylate composite particles into the polyacrylate matrix. When the grafting degree of polyacrylate onto silica was in a moderate range (ca. 20%–70%), almost all of silica particles in these “guava-like” composite particles were dispersed into the polyacrylate matrix in a primary-particle-level. However, at a lower grafting degree, massive silica aggregations were found in molded composites because of the lack of steric protection. At a greater grafting degree (i.e., 200%), a cross-linked network was formed in the silica/polyacrylate composite particles, which prevented the dispersion of composite particles in THF and polyacrylate matrix as primary particles.

关键词: silica/polyacrylate composite     cross-linked network     –70     guava-like     TEM    

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1581-1592 doi: 10.1007/s11705-023-2327-7

摘要: Herein, Cu–Al bimetallic oxide was synthesized and mixed with mesoporous silica spheres via a simple hydrothermal method. The prepared sample was then analyzed and employed to activate potassium peroxydisulfate for bisphenol A removal. Based on the results of X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy, Cu–Al bimetallic oxide was determined as CuO-Al2O3, and mesoporous silica spheres were found around the these particles. At 30 min, a bisphenol A degradation level of 90% was achieved, and it remained at over 60% after five consecutive cycles, indicating the catalyst’s superior capacity and stability. In terms of removal performance, the radical pathway (including SO4•‒, OH •, and O2•‒) and singlet oxygen (1O2) played minor roles, while electron migration between bisphenol A, potassium peroxydisulfate, and the catalyst played a dominant role. The introduction of Al2O3 promoted the formation of surface oxygen vacancies, which improved ligand complex formation between potassium peroxydisulfate and the catalyst, thereby facilitating electron migration. Furthermore, mesoporous silica spheres augment not only enhanced bisphenol A adsorption but also alleviated Cu leaching. Overall, this work is expected to provide significant support for the rational development of catalysts with high catalytic activity for persulfate activation via surface electron migration.

关键词: Cu–Al bimetallic oxides     mesoporous silica spheres     peroxydisulfate     bisphenol A    

The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1224-1236 doi: 10.1007/s11705-022-2139-1

摘要: Ordered SBA-15 mesoporous silica with incorporated titanium was successfully synthesized via a one-pot hydrothermal crystallization method. The characterization including powder X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscope, temperature-programmed reduction, temperature-programmed desorption, Fourier transform infrared and ultraviolet-visible-near infrared spectrometer was performed to explore the physical and chemical structures of both the supports and the catalysts. The results showed that titanium was successfully incorporated into the mesoporous silica framework with a limited amount of titanium (Si/Ti > 20), and the mesoporous structure was retained. However, the increased titanium content inevitably resulted in the formation of anatase TiO 2 particles on the support surface. The increased incorporated titanium strengthened the interactions between cobalt species and supports, which was favorable for the cobalt species dispersion, despite the limited cobalt oxide reducibility. The enhanced metal-support interactions were beneficial for the CO/H2 ratio at the active cobalt sites, which facilitated the formation of more C5+ hydrocarbons. This study provides a promising method for support modification with incorporated-heteroatoms for the rational development of Fischer–Tropsch catalysts.

关键词: Fischer–Tropsch synthesis     titanium incorporation     mesoporous silica     metal-support interactions     C5+ selectivity    

The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1101-1113 doi: 10.1007/s11705-021-2095-1

摘要: Nanoparticles with high surface energy and chemical activity have drawn substantial attention in petroleum industry. Recently, Janus nanoparticles exhibited tremendous potential in enhanced oil recovery (EOR) due to their asymmetric structures and properties. In this study, a series of amphiphilic pseudo-Janus@OTAB (PJ@C18) nanoparticles with different concentrations of stearyltrimethylammoium bromide (OTAB) were successfully fabricated. The structures and properties of PJ@C18 were characterized by Fourier transform infrared spectroscopy and ζ-potential measurements. Based on the emulsification experimental results, the interaction models and the self-assembly behavior between hydrophilic nanoparticles (SiO2@NH2) and OTAB molecules at the oil/water interface were proposed, which was further confirmed via the measurements of the contact angle and dynamic interfacial tension. Interestingly, it was found that the change of pH value from 7.5 to 4.0 caused the type reversal of the PJ@C18-1000 stabilized Pickering emulsions. Furthermore, the PJ@C18-1000 stabilized Pickering emulsion system with excellent salt and temperature tolerances (10000 mg∙L–1, 90 °C) significantly improved the oil recovery in the single-tube (more than 17%) and double-tube (more than 25%) sand pack model flooding tests. The findings of this study could help to better understand the construction mechanism of pseudo-Janus silica/surfactant assembly and the potential application of PJ@C18-1000 stabilized Pickering emulsions for EOR.

关键词: Janus nanoparticles     surfactant     double phase inversion     self-assembly     enhanced oil recovery    

Flexible micro flow sensor for micro aerial vehicles

Rong ZHU, Ruiyi QUE, Peng LIU

《机械工程前沿(英文)》 2017年 第12卷 第4期   页码 539-545 doi: 10.1007/s11465-017-0427-0

摘要:

This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

关键词: micro flow sensor     flexible sensor     surface flow sensing     aerodynamic parameter     micro aerial vehicle (MAV)    

Effects of polyethylenimine on the dispersibility of hollow silica nanoparticles

WEN Lixiong, WANG Qing, ZHENG Tianyuan, CHEN Jianfeng

《化学科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 277-282 doi: 10.1007/s11705-007-0050-4

摘要: In this study, two different methods were applied to disperse hollow silica nanoparticles (HSNP); one employed polyethylenimine (PEI) as the dispersant during the synthesis processes for preparing HSNP, while the other added PEI into suspensions of the prepared HSNP and used milling treatment to achieve the desired dispersion. It was found that adding PEI during the synthesis process of HSNP had no noticeable improvement in the dispersion, while adding PEI into suspensions of the prepared HSNP and utilizing milling treatment resulted in remarkable dispersion improvement. Therefore, the latter was chosen as the method in dispersing HSNP suspensions. The adsorption of PEI on the surface of HSNP and the stability of the aqueous suspensions was investigated. The results indicated that the adsorption of PEI on the surface of HSNP would increase the repulsive energy among particles, hence reducing the agglomeration of HSNP and improving the stability of the aqueous suspensions. The change of HSNP’s ζ potential after adding PEI and the relationship between the adsorbed amount of PEI and pH were also investigated.

关键词: dispersion improvement     different     prepared HSNP     relationship     agglomeration    

copolymerization of -isopropylacrylamide with 3-(methacryloxy)propyl trimethoxysilane on ultrafine silica

ZHANG Liping, ZHU Yi, NI Caihua

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 242-247 doi: 10.1007/s11705-008-0043-y

摘要: Thermosensitive core-shell particles were synthesized through graft copolymerization of -isopropylacrylamide with [ 3-(methacryloxy) propyl]trimethoxysilane (MPT) coupled on the surface of ultrafine silica beads. The copolymerization was carried out using polyvinyl alcohol as a surfactant, water and cyclohexanol as mixed solvent, and 2,2′-azobis(isobutyronitrile) as an initiator. The effect of surfactant concentration and the composition of the mixed solvent on the graft rate were investigated. The structure of modified silica was confirmed by infrared spectra. Differential scanning calorimetry (DSC) has revealed the thermosensitivity of the particles. The thermosensitive particles were used as packing materials of high performance liquid chromatography (HPLC) columns for separating naphthalene derivatives. Satisfactory separation was obtained by controlling the temperature of the column. In contrast, the packing material of silica-MPT has no such separation efficiency due to the lack of thermosensitivity. The effect of the composition of the mobile phase on the separating efficiency was also investigated. The temperature-controlled separation was effective only when the water content was higher than 90% (v/v) in the water-methanol mobile phase. The mechanism for the temperature-controlled separation is attributed to a polarity change of poly(-isopropylacrylamide) which undergoes volume phase transition on the silica surface as the temperature increases.

关键词: undergoes     water-methanol     surfactant concentration     copolymerization     chromatography    

Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1198-1210 doi: 10.1007/s11705-021-2133-z

摘要: Sulfonic acid functionalized mesoporous silica based solid acid catalysts with different morphology were designed and fabricated. The synthesized materials were characterized by various physicochemical and spectroscopic techniques like scanning electron microscope-energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface area, thermogravimetric analysis and n-butylamine acidity. The shape of catalysts particles plays an important role in its activity. The sulfonic acid functionalized mesoporous silica catalysts of spherical shape and the cube shape were assessed for catalytic activity in biodiesel production. The catalytic biodiesel production reaction over the catalysts were studied by esterification of free fatty acid, oleic acid with methanol. The effect of various reaction parameters such as catalyst concentration, acid/alcohol molar ratio, catalyst amount, reaction temperature and reaction time on catalytic activity were investigated to optimize the conditions for maximum conversion. It was sulfonated cubic shape mesoporous silica which exhibited better activity as compared to the spherical shape silica catalysts. Additionally, the catalyst was regenerated and reused up to three cycles without any significant loss in activity. The present catalysts exhibit superior performance in biodiesel production and it can be used for the several biodiesel feedstock’s that are rich in free fatty acids.

关键词: solid acid catalyst     mesoporous silica     sulfonic acid     biodiesel     esterification     oleic acid    

Dependence of error sensitivity of frequency on bias voltage in force-balanced micro accelerometer

Lili CHEN, Wu ZHOU

《机械工程前沿(英文)》 2013年 第8卷 第2期   页码 146-149 doi: 10.1007/s11465-013-0260-z

摘要:

To predict more precisely the frequency of force-balanced micro accelerometer with different bias voltages, the effects of bias voltages on error sensitivity of frequency is studied. The resonance frequency of accelerometer under closed loop control is derived according to its operation principle, and its error sensitivity is derived and analyzed under over etching structure according to the characteristics of Deep Reaction Ion Etching (DRIE). Based on the theoretical results, micro accelerometer is fabricated and tested to study the influences of AC bias voltage and DC bias voltage on sensitivity, respectively. Experimental results indicate that the relative errors between test data and theory data are less than 7%, and the fluctuating value of error sensitivity under the range of voltage adjustment is less than 0.01 μm . It is concluded that the error sensitivity with designed parameters of structure, circuit and process error can be used to predict the frequency of accelerometer with no need to consider the influence of bias voltage.

关键词: Micro-Electro-Mechanical Systems (MEMS)     micro accelerometer     force-balanced micro accelerometer     frequency     error sensitivity    

Numerical simulation of micro scale flowing and boiling

Wen WANG, Rui ZHUAN,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 396-401 doi: 10.1007/s11708-009-0049-2

摘要: Numerical simulations of flowing and boiling in micro channels are presented, including the modeling of bubble dynamics of nucleate boiling, and a description of the interface of two phases with the volume-of-fluid (VOF). The two calculated cases are compared with related experimental data in literature. Some simulated results are found corresponding well to the experimental data. The simulated results also show the details of 3-dimensional heat transfer and the flow in micro channels, which are helpful to the investigation of the mechanism of two-phase heat transfer and flow in micro channels.

关键词: volume-of-fluid (VOF)     micro channel     nucleate boiling     bubble dynamics     simulation    

Preparation and characterization of polyimide/silica/silver composite films

JIANG Lizhong, WU Dezhen, LUO Ning, WU Zhanpeng, MOU Nanxiang

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 291-295 doi: 10.1007/s11705-008-0059-3

摘要: Polyimide/silica/silver hybrid films were prepared by the sol-gel method combined with single-stage self-metallization technique. The structure of polyimide films in the thermal curing process and the influence of silica content on the migration and aggregation of silver particles to the surface of hybrid films were investigated. The hybrid films were characterized by transmission electron microscopy, dynamic mechanical thermal analysis, Fourier transform infrared spectroscopy, ultraviolet visible spectroscopy and mechanical measurements. The results indicated that there was no degradation of the polyimide matrix after the formation of silica and silver particles. Silica acted as the nucleus for the silver particles. With increasing silica content, more and more silver particles were kept in the hybrid films instead of being migrated onto the surface of the hybrid films and the reflections of hybrid films decreased gradually.

关键词: single-stage self-metallization     spectroscopy     transmission     Polyimide/silica/silver     ultraviolet visible    

Dynamical research on spherical micro actuator with piezoelectric ceramic stacks drivers

ZHANG Ruihua, CHEN Haichu

《机械工程前沿(英文)》 2007年 第2卷 第4期   页码 433-438 doi: 10.1007/s11465-007-0074-y

摘要: This paper develops a 30 mm × 30 mm × 50 mm spherical micro actuator driven by piezoelectric ceramic stacks (PZT), and analyzes its dynamic performances. First, the space coordinate relationship of the spherical micro actuator and a dynamic model are set up. Second, The Runge-Kutta arithmetic is used to calculate the dynamical parameters of the micro actuator; the SIMULINK module of MATLAB is used to build the dynamical simulating model and then simulate it. Third, an experimental sample of the spherical micro actuator is developed, a micromanipulator is integrated with a micro-gripper based on the sample spherical micro actuator, and the experimental research on the micro assembly is conducted between a micro shaft of 180 μm and a micro spindle sleeve of 200 μm. Finally, the characteristics of the spherical micro actuator influenced by the mass of the metal sphere of the micro actuator, driving signal frequency, friction coefficient of the contact surface between the metal sphere and the friction block of the micro driving unit are analyzed. The experimental results indicate that the rotation resolution of the micro actuator reaches 0.000 1°, the rotation positioning precision reaches 0.000 5°, and the maximum working frequency is about 1200 Hz. The experimental results validate the back rotation vibration model of the spherical micro actuator. The micromanipulator integrated by the spherical micro actuator can meet the requirements of precise micro operation and assembly for micro electro mechanical systems (MEMS) or other microelements in micro degree fields.

关键词: spherical     micro-gripper     friction coefficient     dynamic     frequency    

Deep learning model for estimating the mechanical properties of concrete containing silica fume exposed

Harun TANYILDIZI, Abdulkadir ŞENGÜR, Yaman AKBULUT, Murat ŞAHİN

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1316-1330 doi: 10.1007/s11709-020-0646-z

摘要: In this study, the deep learning models for estimating the mechanical properties of concrete containing silica fume subjected to high temperatures were devised. Silica fume was used at concentrations of 0%, 5%, 10%, and 20%. Cube specimens (100 mm × 100 mm × 100 mm) were prepared for testing the compressive strength and ultrasonic pulse velocity. They were cured at 20°C±2°C in a standard cure for 7, 28, and 90 d. After curing, they were subjected to temperatures of 20°C, 200°C, 400°C, 600°C, and 800°C. Two well-known deep learning approaches, i.e., stacked autoencoders and long short-term memory (LSTM) networks, were used for forecasting the compressive strength and ultrasonic pulse velocity of concrete containing silica fume subjected to high temperatures. The forecasting experiments were carried out using MATLAB deep learning and neural network tools, respectively. Various statistical measures were used to validate the prediction performances of both the approaches. This study found that the LSTM network achieved better results than the stacked autoencoders. In addition, this study found that deep learning, which has a very good prediction ability with little experimental data, was a convenient method for civil engineering.

关键词: concrete     high temperature     strength properties     deep learning     stacked auto-encoders     LSTM network    

标题 作者 时间 类型 操作

Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene

Fatemeh ZAHIRI, Hamid ESKANDARI-NADDAF

期刊论文

Porous silica synthesis out of coal fly ash with no residue generation and complete silicon separation

期刊论文

Dispersion of “guava-like” silica/polyacrylate nanocomposite particles in polyacrylate matrix

QI Dongming, YANG Lei, WU Minghua, SHAO Jianzhong, BAO Yongzhong

期刊论文

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

期刊论文

The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts

期刊论文

The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering

期刊论文

Flexible micro flow sensor for micro aerial vehicles

Rong ZHU, Ruiyi QUE, Peng LIU

期刊论文

Effects of polyethylenimine on the dispersibility of hollow silica nanoparticles

WEN Lixiong, WANG Qing, ZHENG Tianyuan, CHEN Jianfeng

期刊论文

copolymerization of -isopropylacrylamide with 3-(methacryloxy)propyl trimethoxysilane on ultrafine silica

ZHANG Liping, ZHU Yi, NI Caihua

期刊论文

Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production

期刊论文

Dependence of error sensitivity of frequency on bias voltage in force-balanced micro accelerometer

Lili CHEN, Wu ZHOU

期刊论文

Numerical simulation of micro scale flowing and boiling

Wen WANG, Rui ZHUAN,

期刊论文

Preparation and characterization of polyimide/silica/silver composite films

JIANG Lizhong, WU Dezhen, LUO Ning, WU Zhanpeng, MOU Nanxiang

期刊论文

Dynamical research on spherical micro actuator with piezoelectric ceramic stacks drivers

ZHANG Ruihua, CHEN Haichu

期刊论文

Deep learning model for estimating the mechanical properties of concrete containing silica fume exposed

Harun TANYILDIZI, Abdulkadir ŞENGÜR, Yaman AKBULUT, Murat ŞAHİN

期刊论文