资源类型

期刊论文 5

年份

2023 1

2021 1

2017 1

2015 1

2006 1

关键词

分布柔度簧片 1

微立体光固化 1

精密增材制造 1

纳米定位 1

纳米定位;柔顺导向;大行程;音圈电机;洛伦兹力驱动器 1

展开 ︾

检索范围:

排序: 展示方式:

Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning

Ruizhou WANG, Xianmin ZHANG

《机械工程前沿(英文)》 2015年 第10卷 第1期   页码 20-36 doi: 10.1007/s11465-015-0328-z

摘要:

Packaged piezoelectric ceramic actuators (PPCAs) and compliant mechanisms are attractive for nanopositioning and nanomanipulation due to their ultra-high precision. The way to create and keep a proper and steady connection between both ends of the PPCA and the compliant mechanism is an essential step to achieve such a high accuracy. The connection status affects the initial position of the terminal moving plate, the positioning accuracy and the dynamic performance of the nanopositioning platform, especially during a long-time or high-frequency positioning procedure. This paper presents a novel external preload mechanism and tests it in a 1-degree of freedom (1-DOF) compliant nanopositioning platform. The 1-DOF platform utilizes a parallelogram guiding mechanism and a parallelogram load mechanism to provide a more accurate actual input displacement and output displacement. The simulation results verify the proposed stiffness model and dynamic model of the platform. The values of the preload displacement, actual input displacement and output displacement can be measured by three capacitive sensors during the whole positioning procedure. The test results show the preload characteristics vary with different types or control modes of the PPCA. Some fitting formulas are derived to describe the preload displacement, actual input displacement and output displacement using the nominal elongation signal of the PPCA. With the identification of the preload characteristics, the actual and comprehensive output characteristics of the PPCA can be obtained by the strain gauge sensor (SGS) embedded in the PPCA.

关键词: nanopositioning     preload characteristic     packaged piezoelectric ceramic actuator     compliant mechanism    

High-bandwidth nanopositioning via active control of system resonance

Linlin LI, Sumeet S. APHALE, Limin ZHU

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 331-339 doi: 10.1007/s11465-020-0619-x

摘要: Typically, the achievable positioning bandwidth for piezo-actuated nanopositioners is severely limited by the first, lightly-damped resonance. To overcome this issue, a variety of open- and closed-loop control techniques that commonly combine damping and tracking actions, have been reported in literature. However, in almost all these cases, the achievable closed-loop bandwidth is still limited by the original open-loop resonant frequency of the respective positioning axis. Shifting this resonance to a higher frequency would undoubtedly result in a wider bandwidth. However, such a shift typically entails a major mechanical redesign of the nanopositioner. The integral resonant control (IRC) has been reported earlier to demonstrate the significant performance enhancement, robustness to parameter uncertainty, gua-ranteed stability and design flexibility it affords. To further exploit the IRC scheme’s capabilities, this paper presents a method of actively shifting the resonant frequency of a nanopositioner’s axis, thereby delivering a wider closed-loop positioning bandwidth when controlled with the IRC scheme. The IRC damping control is augmented with a standard integral tracking controller to improve positioning accuracy. And both damping and tracking control parameters are analytically optimized to result in a Butterworth Filter mimicking pole-placement—maximally flat passband response. Experiments are conducted on a nanopositioner’s axis with an open-loop resonance at 508 Hz. It is shown that by employing the active resonance shifting, the closed-loop positioning bandwidth is increased from 73 to 576 Hz. Consequently, the root-mean-square tracking errors for a 100 Hz triangular trajectory are reduced by 93%.

关键词: nanopositioning stage     high-bandwidth     resonant mode control     tracking control     integral resonant control    

以电子方式提升洛伦兹力驱动器的大行程纳米定位精度 Research Article

Bimal Jeet GOTEEA,张前军,董为

《信息与电子工程前沿(英文)》 2023年 第24卷 第7期   页码 1080-1092 doi: 10.1631/FITEE.2200255

摘要: 本文展现了一种基于洛伦兹力驱动器和柔顺导向的精密厘米级定位器。通过使用一个额外的数模转换器(DAC)和运算放大器(op amp)电路,以及合适的控制器将定位精度提高到纳米级。首先,基于柔顺导向模型的刚度为驱动器设计了恰当的线圈。然后通过有限元分析(FEA)验证了柔顺机构和驱动器的性能。基于此,提出一种通过电子方式提升定位性能的方法及控制方案。最后,构建了原理样机并对其性能进行评估。该定位器的特色在于其在10 mm行程内实现10 nm分辨率。所提出的方案可以拓展适用于其他同类型系统。

关键词: 纳米定位;柔顺导向;大行程;音圈电机;洛伦兹力驱动器    

Nanopositioning and Nonlinearity Compensation for Step Imprint Lithography Tool

LU Bing-heng, LIU Hong-zhong, DING Yu-cheng, WANG Li, QIU Zhi-hui

《机械工程前沿(英文)》 2006年 第1卷 第1期   页码 6-13 doi: 10.1007/s11465-005-0003-x

摘要:

In this paper, the motion mode and nanopositioning accuracy in the step imprinting lithography process are presented, and the positioning errors different from the traditional errors, such as the gap error existing in the hinges of the stage structure and the random error produced during the process of the stage position adjustment, are analyzed. To avoid and eliminate these nonlinearity errors, radial basis function proportional integral derivative and position control algorithms are introduced into the macroand microdriving processes, respectively. The innovation of this driving method is that the motion locus is monotone, nonoscillatory, and a multistep approaching target, which eliminates the root of the random error by single direction driving mode and avoids the backlash error through preloading function. Driving experiments of different motion ranges prove that this nonlinearity compensation is very effective and the positioning accuracy during the step imprinting process can be improved up to 10 nm.

关键词: different     nonoscillatory     nonlinearity     integral derivative     positioning    

面向精密增材制造的大范围柔性伺服系统

Zhen Zhang, Peng Yan, Guangbo Hao

《工程(英文)》 2017年 第3卷 第5期   页码 708-715 doi: 10.1016/J.ENG.2017.05.020

摘要:
本文主要介绍可用于微立体光固化(MSL)工艺的基于分布柔度簧片的大范围柔性纳米伺服系统的设计、开发和控制。作为这一高精度工艺的使能技术,本文设计了一种兼具毫米级运动行程和纳米级运动精度的紧凑型台式柔性纳米运动系统。由于在运行中无需装配和维护,这种柔性运动系统非常适合苛刻的操作条件。从机械设计的角度来看,镜像对称布局和适当的冗余约束对于抑制寄生运动至关重要。本文对此系统进行了详细的有限元分析(FEA),分析结果表面系统具有满意的机械特征。通过纳米运动系统的动力学模型辨识,本文设计了实时控制策略,并将其应用在一体加工的原型系统中。实验验证了面向MSL 工艺过程的轨迹跟踪性能。所提出的纳米伺服运动系统具有毫米级的工作范围,圆轨迹跟踪误差约为80 nm(均方根值)。

关键词: 精密增材制造     微立体光固化     纳米定位     分布柔度簧片    

标题 作者 时间 类型 操作

Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning

Ruizhou WANG, Xianmin ZHANG

期刊论文

High-bandwidth nanopositioning via active control of system resonance

Linlin LI, Sumeet S. APHALE, Limin ZHU

期刊论文

以电子方式提升洛伦兹力驱动器的大行程纳米定位精度

Bimal Jeet GOTEEA,张前军,董为

期刊论文

Nanopositioning and Nonlinearity Compensation for Step Imprint Lithography Tool

LU Bing-heng, LIU Hong-zhong, DING Yu-cheng, WANG Li, QIU Zhi-hui

期刊论文

面向精密增材制造的大范围柔性伺服系统

Zhen Zhang, Peng Yan, Guangbo Hao

期刊论文