资源类型

期刊论文 93

年份

2023 7

2022 8

2021 6

2020 7

2019 12

2018 2

2017 4

2016 4

2015 5

2014 8

2013 1

2012 3

2011 4

2010 6

2009 4

2008 2

2007 4

2006 2

2005 1

2003 1

展开 ︾

关键词

V形坑 1

优化 1

位移与滑动形式 1

体积应变 1

内衬混凝土 1

剪切和弯曲的共同作用 1

剪切带 1

剪切应力 1

剪切应变 1

剪切波 1

剪应力强度包线 1

剪胀性 1

动态强度 1

动态硬度 1

压板抗滑试验 1

压硬性 1

固定床 1

圆形巷道 1

地球物理 1

展开 ︾

检索范围:

排序: 展示方式:

Rheological behavior of PMVE-MA aqueous solution with metallic cations

Xiaoping DONG, Li LI, Jun XU, Xuhong GUO

《化学科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 126-130 doi: 10.1007/s11705-010-0548-z

摘要: The rheological properties of aqueous solutions of poly(methyl vinyl ether-co-maleic anhydride) (PMVE-MA) upon addition of metallic cations at different pH values were investigated. Sol-gel transition and shear-thickening phenomena at moderate shear rate were observed upon increasing the amount of metallic cations, especially for cupric cation. At certain molar ratio ( ) of added cupric cations to carboxyl groups in PMVE-MA, the system became gel-like, and the storage modulus (G′) and loss modulus (G′′) were parallel and exhibited a power-law dependence on the frequency, which is consistent with Winter’s hypothesis of determining the gel point of a crosslinking system. The shear-thickening behavior depends on , pH, metallic valence, and temperature.

关键词: poly(methyl vinyl ether-co-maleic anhydride)     shear-thickening     gel point     rheology    

A hybrid membrane process for simultaneous thickening and digestion of waste activated sludge

Zhiwei WANG, Qiaoying WANG, Zhichao WU, Xinhua WANG,

《环境科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 272-279 doi: 10.1007/s11783-010-0234-x

摘要: A hybrid membrane process for simultaneous sludge thickening and digestion (MSTD) was studied. During one cycle (15 d) of operation under a hydraulic retention time of 1 d, the concentration of mixed liquor suspended solids (MLSS) continuously increased from about 4 g·L to 34 g·L, and the mixed liquor volatile suspended solids (MLVSS) increased from about 3 g·L to over 22 g·L. About 42% of the MLVSS and 39% of the MLSS reduction were achieved. The thickening and digestion effects in the MSTD were further analyzed based on a mass balance analysis. Test results showed that biopolymers and cations of biomass were gradually released to the bulk solution during the process. It was also found that the capillary suction time, colloidal chemical oxygen demand, soluble microbial products, viscosity, and MLSS had significant positive correlations with the membrane fouling rate, whereas extracellular polymeric substances, polysaccharides, and proteins extracted from biomass had negative impacts on membrane fouling.

关键词: membrane filtration     sludge digestion     sludge thickening     waste activated sludge    

Simple model of sludge thickening process in secondary settlers

Yuankai ZHANG,Hongchen WANG,Lu QI,Guohua LIU,Zhijiang HE,Songzhu JIANG

《环境科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 319-326 doi: 10.1007/s11783-014-0758-6

摘要: In wastewater treatment plants (WWTPs), a secondary settler acts as a clarifier, sludge thickener, and sludge storage tank during peak flows and therefore plays an important role in the performance of the activated sludge process. Sludge thickening occurs in the lower portions of secondary clarifiers during their operation. In this study, by detecting the hindered zone from the complete thickening process of activated sludge, a simple model for the sludge thickening velocity, , describing the potential and performance of activated sludge thickening in the hindered zone was developed. However, sludge thickening in the compression zone was not studied because sludge in the compression zone showed limited thickening. This empirical model was developed using batch settling data obtained from four WWTPs and validated using measured data from a fifth WWTP to better study sludge thickening. To explore different sludge settling and thickening mechanisms, the curves of sludge thickening and sludge settling were compared. Finally, it was found that several factors including temperature, stirring, initial depth, and polymer conditioning can lead to highly concentrated return sludge and biomass in a biologic reactor.

关键词: wastewater treatment plants     secondary settler     sludge thickening     sludge settling     hindered zone    

Enhancement of sludge gravitational thickening with weak ultrasound

Panyue ZHANG, Tian WAN, Guangming ZHANG

《环境科学与工程前沿(英文)》 2012年 第6卷 第5期   页码 753-760 doi: 10.1007/s11783-011-0368-5

摘要: Gravitational thickening is the prevailing method to reduce sludge volume but the process is slow and usually requires addition of polyelectrolyte(s). This paper investigated the potential benefits of sonication on enhancing the sludge gravitational thickening with very low energy dose, so called “weak ultrasound”. Results showed that weak sonication significantly changed the sludge settlability and the main mechanism was release of the loosely bounded extracellular polymeric substances. The changes in sludge behaviors by sonication were strongly influenced by power density and sonication duration. Lower sound frequency was slightly better than higher frequency. Weak sonication (<680 kJ·kg DS) improved the sludge gravitational thickening while high ultrasonic energy deteriorated the process. Considering both the sludge thickening efficiency and energy consumption, the optimum conditions were 0.15 W·mL , 7 s, and 25 kHz. Under such conditions, the energy dose was only 155 kJ·kg DS, much lower than literature reports, and the sludge settling time was shortened from 24 h to 12?h. Weak sonication could substitute expensive polyelectrolyte coagulant for sludge thickening. Combination of weak sonication and polyelectrolyte could further reduce the settling time to 6 h. The final water content of the thickened sludge was not changed after sonication or polyelectrolyte addition.

关键词: activated sludge     sonication     settlability     dry weight     extracellular polymeric substances     polyelectrolyte    

A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering

Jianwei Liu, Kaixiong Yang, Lin Li, Jingying Zhang

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0932-8

摘要: A full-scale integrated-bioreactor consisting of a suspended zone and an immobilized zone was employed to treat the ordours emitted from a wastewater treatment plant. The inlet concentrations of H S and NH were 1.6–38.6 mg·m and 0.1–6.7 mg·m , respectively, while the steady-state outlet concentrations were reduced to 0–2.8 mg·m for H S and 0–0.5 mg·m for NH . Both H S and NH were eliminated effectively by the integrated bioreactor. The removal efficiencies of H S and NH differed between the two zones. Four species of microorganisms related to the degradation of H S and NH were isolated. The characteristics and distributions of the microbes in the bioreactor depended on the inlet concentration of substrates and the micro-environmental conditions in the individual zones. Product analysis indicated that most of the H S was oxidized into sulfate in the immobilized zone but was dissolved into the liquid phase in the suspended zone. A large amount of NH was converted into nitrate and nitrite by nitration in the suspended zone, whereas only a small amount of NH was transferred to the aqueous phase mainly by absorption or chemical neutralization in the immobilized zone. Different microbial populations dominated the individual zones, and the major biodegradation products varied accordingly.

关键词: Biological deodorization     Microbial characteristics     Ammonia     Hydrogen sulfide     Wastewater treatment plant    

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 143-157 doi: 10.1007/s11709-016-0377-3

摘要: Light-frame timber buildings are often stabilized against lateral loads by using diaphragm action of roofs, floors and walls. The mechanical behavior of the sheathing-to-framing joints has a significant impact on the structural performance of shear walls. Most sheathing-to-framing joints show nonlinear load-displacement characteristics with plastic behavior. This paper is focused on the finite element modeling of shear walls. The purpose is to present a new shear connector element based on the theory of continuum plasticity. The incremental load-displacement relationship is derived based on the elastic-plastic stiffness tensor including the elastic stiffness tensor, the plastic modulus, a function representing the yield criterion and a hardening rule, and function representing the plastic potential. The plastic properties are determined from experimental results obtained from testing actual connections. Load-displacement curves for shear walls are calculated using the shear connector model and they are compared with experimental and other computational results. Also, the ultimate horizontal load-carrying capacity is compared to results obtained by an analytical plastic design method. Good agreements are found.

关键词: shear walls     wall diaphragms     finite element modelling     plastic shear connector     analytical modelling     experimental comparison    

Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads

Dan V. BOMPA, Ahmed Y. ELGHAZOULI

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 331-356 doi: 10.1007/s11709-019-0596-5

摘要: This paper examines the structural response of reinforced concrete flat slabs, provided with fully-embedded shear-heads, through detailed three-dimensional nonlinear numerical simulations and parametric assessments using concrete damage plasticity models. Validations of the adopted nonlinear finite element procedures are carried out against experimental results from three test series. After gaining confidence in the ability of the numerical models to predict closely the full inelastic response and failure modes, numerical investigations are carried out in order to examine the influence of key material and geometric parameters. The results of these numerical assessments enable the identification of three modes of failure as a function of the interaction between the shear-head and surrounding concrete. Based on the findings, coupled with results from previous studies, analytical models are proposed for predicting the rotational response as well as the ultimate strength of such slab systems. Practical recommendations are also provided for the design of shear-heads in RC slabs, including the embedment length and section size. The analytical expressions proposed in this paper, based on a wide-ranging parametric assessment, are shown to offer a more reliable design approach in comparison with existing methods for all types of shear-heads, and are suitable for direct practical application.

关键词: non-linear numerical modelling     concrete damage plasticity     RC flat slabs     shear-heads     punching shear    

Behaviour of self-centring shear walls——A state of the art review

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 53-77 doi: 10.1007/s11709-022-0850-0

摘要: The application of unbonded post-tensioning (PT) in structural walls has led to the development of advanced self-centring (rocking) shear wall systems that has significant advantages, including accelerated construction due to the incorporation of prefabricated elements and segmental construction for different materials (e.g., concrete, masonry, and timber), reduced residual drifts, and little damage upon extreme seismic and wind loads. Concrete, masonry, and timber are often used for the construction of unbonded PT structural wall systems. Despite extensive research since the 1980s, there are no well-established design guidelines available on the shear wall configuration with the required energy dissipation system, joint’s locations and acceptance criteria for shear sliding, confinement, seismic performance factors, PT loss, PT force range and residual drifts of shear walls subjected to lateral loads. In this research a comprehensive state-of-the-art literature review was performed on self-centring shear wall system. An extensive study was carried out to collect a database of 100 concrete, masonry, and self-centring shear wall tests from the literature. The established database was then used to review shear walls’ configurations, material, and components to benchmark requirements applicable for design purposes. The behaviour of concrete, masonry and timber shear walls were compared and critically analysed. The general behaviour, force-displacement performance of the walls, ductility, and seismic response factors, were critically reviewed and analysed for different self-centring wall systems to understand the effect of different parameters including configurations of the walls, material used for construction of the wall (concrete, masonry, timber) and axial stress ratio. The outcome of this research can be used to better understand the behaviour of self-centring wall system in order to develop design guidelines for such walls.

关键词: self-centring shear walls     rocking walls     energy dissipation     seismic performance factors     PT loss     residual drift    

Prediction of the shear wave velocity

Amoroso SARA

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 83-92 doi: 10.1007/s11709-013-0234-6

摘要: The paper examines the correlations to obtain rough estimates of the shear wave velocity from non-seismic dilatometer tests (DMT) and cone penetration tests (CPT). While the direct measurement of is obviously preferable, these correlations may turn out useful in various circumstances. The experimental results at six international research sites suggest that the DMT predictions of from the parameters (material index), (horizontal stress index), (constrained modulus) are more reliable and consistent than the CPT predictions from (cone resistance), presumably because of the availability, by DMT, of the stress history index .

关键词: horizontal stress index     shear wave velocity     flat dilatometer test     cone penetration test    

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 396-410 doi: 10.1007/s11709-023-0934-5

摘要: In this study, a new system consisting of a combination of braces and steel infill panels called the braced corrugated steel shear panel (BCSSP) is presented. To obtain the hysteretic behavior of the proposed system, the quasi-static cyclic performances of two experimental specimens were first evaluated. The finite element modeling method was then verified based on the obtained experimental results. Additional numerical evaluations were carried out to investigate the effects of different parameters on the system. Subsequently, a relationship was established to estimate the buckling shear strength of the system without considering residual stresses. The results obtained from the parametric study indicate that the corrugated steel shear panel (CSSP) with the specifications of a = 30 mm, t = 2 mm, and θ = 90° had the highest energy dissipation capacity and ultimate strength while the CSSP with the specifications of a = 30 mm, t = 2 mm, and θ = 30° had the highest initial stiffness. It can thus be concluded that the latter CSSP has the best structural performance and that increasing the number of corrugations, corrugation angle, and plate thickness and decreasing the sub-panel width generally enhance the performance of CSSPs in terms of the stability of their hysteretic behaviors.

关键词: trapezoidal corrugated plate     steel shear panel     braced steel shear panel     experimental study     buckling resistance.    

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 325-336 doi: 10.1007/s11709-014-0080-1

摘要: In determining the shear capacity of reinforced concrete beams, current codes do not provide any calculation method to evaluate the influence of web horizontal reinforcement, although they exist as structural reinforcements (or skin reinforcement). The present paper comprises results of 11 reinforced concrete beams in an effort to investigate the influence of web horizontal reinforcement on the shear behavior of reinforced concrete beams. The primary design variables are the shear-span-depth ratio, different reinforcement ratio of stirrups and web horizontal reinforcement. Influence of web horizontal reinforcement on crack patterns and failure mode was studied. It was found that web horizontal reinforcement can increase the shear capacity of the beams and restrain growth of inclined cracks effectively. Test results are very valuable, as very few references of shear tests can be found focusing on the effect of web horizontal reinforcement on the shear capacity of the beams.

关键词: reinforced concrete beam     shear strength     web horizontal reinforcement     experiments    

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1595-7

摘要:

● Mechanical behavior of MBT waste affected by loading rate was investigated.

关键词: Mechanically and biologically treated waste     Landfill     Triaxial test     Loading rate     Axial strain     Shear strength parameter    

Micromixing performance of the teethed high shear mixer under semi-batch operation

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 546-559 doi: 10.1007/s11705-021-2069-3

摘要: Semi-batch operated reaction processes are necessary for some competitive reaction systems to achieve a desirable process selectivity and productivity of fine chemical products. Herein the structural and operating parameters of the teethed high shear mixers were adjusted to study the micromixing performance in the semi-batch operated system, using the Villermaux/Dushman reaction system. The results indicate that the rising of the rotor speed and the number of rotor teeth, the decrease of the width of the shear gap and the radial distance between the feed position and the inner wall of stator can enhance the micromixing level and lead to the decrease of the segregation index. Additionally, computational fluid dynamics calculations were carried out to disclose the evolution of the flow pattern and turbulent energy dissipation rate of the semi-batch operated high shear mixer. Furthermore, the correlation was established with a mean relative error of 8.05% and R2 of 0.955 to fit the segregation index and the parameters studied in this work, which can provide valuable guidance on the design and optimization of the semi-batch operated high shear mixers in practical applications.

关键词: high shear mixer     semi-batch operation     micromixing performance     Villermaux/Dushman system     segregation index    

Predicting the capacity of perfobond rib shear connector using an ANN model and GSA method

Guorui SUN; Jun SHI; Yuang DENG

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1233-1248 doi: 10.1007/s11709-022-0878-1

摘要: Due to recent advances in the field of artificial neural networks (ANN) and the global sensitivity analysis (GSA) method, the application of these techniques in structural analysis has become feasible. A connector is an important part of a composite beam, and its shear strength can have a significant impact on structural design. In this paper, the shear performance of perfobond rib shear connectors (PRSCs) is predicted based on the back propagation (BP) ANN model, the Genetic Algorithm (GA) method and GSA method. A database was created using push-out test test and related references, where the input variables were based on different empirical formulas and the output variables were the corresponding shear strengths. The results predicted by the ANN models and empirical equations were compared, and the factors affecting shear strength were examined by the GSA method. The results show that the use of ANN model optimization by GA method has fewer errors compared to the empirical equations. Furthermore, penetrating reinforcement has the greatest sensitivity to shear performance, while the bonding force between steel plate and concrete has the least sensitivity to shear strength.

关键词: perfobond rib shear connector     shear strength     ANN model     global sensitivity analysis    

Uncertainty of concrete strength in shear and flexural behavior of beams using lattice modeling

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 306-325 doi: 10.1007/s11709-022-0890-5

摘要: This paper numerically studied the effect of uncertainty and random distribution of concrete strength in beams failing in shear and flexure using lattice modeling, which is suitable for statistical analysis. The independent variables of this study included the level of strength reduction and the number of members with reduced strength. Three levels of material deficiency (i.e., 10%, 20%, 30%) were randomly introduced to 5%, 10%, 15%, and 20% of members. To provide a database and reliable results, 1000 analyses were carried out (a total of 24000 analyses) using the MATLAB software for each combination. Comparative studies were conducted for both shear- and flexure-deficit beams under four-point loading and results were compared using finite element software where relevant. Capability of lattice modeling was highlighted as an efficient tool to account for uncertainty in statistical studies. Results showed that the number of deficient members had a more significant effect on beam capacity compared to the level of strength deficiency. The scatter of random load-capacities was higher in flexure (range: 0.680–0.990) than that of shear (range: 0.795–0.996). Finally, nonlinear regression relationships were established with coefficient of correlation values (R2) above 0.90, which captured the overall load–deflection response and level of load reduction.

关键词: lattice modeling     shear failure     flexural failure     uncertainty     deficiency     numerical simulation    

标题 作者 时间 类型 操作

Rheological behavior of PMVE-MA aqueous solution with metallic cations

Xiaoping DONG, Li LI, Jun XU, Xuhong GUO

期刊论文

A hybrid membrane process for simultaneous thickening and digestion of waste activated sludge

Zhiwei WANG, Qiaoying WANG, Zhichao WU, Xinhua WANG,

期刊论文

Simple model of sludge thickening process in secondary settlers

Yuankai ZHANG,Hongchen WANG,Lu QI,Guohua LIU,Zhijiang HE,Songzhu JIANG

期刊论文

Enhancement of sludge gravitational thickening with weak ultrasound

Panyue ZHANG, Tian WAN, Guangming ZHANG

期刊论文

A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering

Jianwei Liu, Kaixiong Yang, Lin Li, Jingying Zhang

期刊论文

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER

期刊论文

Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads

Dan V. BOMPA, Ahmed Y. ELGHAZOULI

期刊论文

Behaviour of self-centring shear walls——A state of the art review

期刊论文

Prediction of the shear wave velocity

Amoroso SARA

期刊论文

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

期刊论文

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

期刊论文

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

期刊论文

Micromixing performance of the teethed high shear mixer under semi-batch operation

期刊论文

Predicting the capacity of perfobond rib shear connector using an ANN model and GSA method

Guorui SUN; Jun SHI; Yuang DENG

期刊论文

Uncertainty of concrete strength in shear and flexural behavior of beams using lattice modeling

期刊论文