资源类型

期刊论文 3

年份

2012 1

2009 1

2008 1

关键词

检索范围:

排序: 展示方式:

Direct ethanol production from rice straw by coculture with two high-performing fungi

Maki TAKANO, Kazuhiro HOSHINO

《化学科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 139-145 doi: 10.1007/s11705-012-1281-6

摘要: To develop efficient and economical direct ethanol production from fine rice straw crashed mechanically, two high-performing fungi, which can secret hyperactive cellulases and/or ferment effectively various sugars, were selected from some strains belong to preserved in our laboratory. The simultaneous saccharification and fermentation (SSF) by coculture with these fungi was investigated. The screening of high-performing fungi resulted in the selection of NBRC 4572 as an ethanol-producing fungus and NBRC 5398 as a cellulase-secreting fungus. The strain 4572 produced ethanol aerobically from glucose and xylose in high yields of 0.420 g/g at 36 h and 0.478 g/g at 60 h, respectively, but secreted fairly low cellulases. On the other hand, the strain 5398 also produced ethanol from glucose in yield of 0.340 g/g though it had a little growth in xylose culture. However, it secreted hyperactive cellulases that are essential for hydrolysis of rice straw in culture and the maximum activities of endo-β-glucanase and β-glucosidase were 2.11 U/L and 1.47 U/L, respectively. In SSF of rice straw by coculture with two fungi selected, the ethanol production reached 1.28 g/L after 96 h when the inoculation ratio of the strain 5398 to the strain 4572 was 9.

关键词: Mucor circinelloides     ethanol production     cellulase secretion     SSF     coculture     rice straw    

Study of simultaneous saccharification and fermentation for steam exploded wheat straw to ethanol

LUO Peng, YANG Chuanmin, LIU Zhong, WANG Gaosheng

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 447-451 doi: 10.1007/s11705-008-0069-1

摘要: Although simultaneous saccharification and fermentation (SSF) has been investigated extensively, the optimum condition for SSF of wheat straw has not yet been determined. Dilute sulfuric acid impregnated and steam explosion pretreated wheat straw was used as a substrate for the production of ethanol by SSF through orthogonal experiment design in this study. Cellulase mixture (Celluclast 1.5 l and -glucosidase Novozym 188) were adopted in combination with the yeast AS2.1. The effects of reaction temperature, substrate concentration, initial fermentation liquid pH value and enzyme loading were evaluated and the SSF conditions were optimized. The ranking, from high to low, of influential extent of the SSF affecting factors to ethanol concentration and yield was substrate concentration, enzyme loading, initial fermentation liquid pH value and reaction temperature, respectively. The optimal SSF conditions were: reaction temperature, 35°C; substrate concentration, 100 g·L; initial fermentation liquid pH, 5.0; enzyme loading, 30 FPU·g. Under these conditions, the ethanol concentration increased with reaction time, and after 72 h, ethanol was obtained in 65.8% yield with a concentration of 22.7 g·L.

关键词: optimal SSF     substrate concentration     optimum condition     enzyme loading     ethanol concentration    

Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic

K. Manikandan, T. Viruthagiri

《化学科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 240-249 doi: 10.1007/s11705-009-0205-6

摘要: Studies on simultaneous saccharification and fermentation (SSF) of wheat bran flour, a grain milling residue as the substrate using coculture method were carried out with strains of starch digesting and nonstarch digesting and sugar fermenting in batch fermentation. Experiments based on central composite design (CCD) were conducted to maximize the glucose yield and to study the effects of substrate concentration, pH, temperature, and enzyme concentration on percentage conversion of wheat bran flour starch to glucose by treatment with fungal α-amylase and the above parameters were optimized using response surface methodology (RSM). The optimum values of substrate concentration, pH, temperature, and enzyme concentration were found to be 200 g/L, 5.5, 65°C and 7.5 IU, respectively, in the starch saccharification step. The effects of pH, temperature and substrate concentration on ethanol concentration, biomass and reducing sugar concentration were also investigated. The optimum temperature and pH were found to be 30°C and 5.5, respectively. The wheat bran flour solution equivalent to 6% ( / ) initial starch concentration gave the highest ethanol concentration of 23.1 g/L after 48 h of fermentation at optimum conditions of pH and temperature. The growth kinetics was modeled using Monod model and Logistic model and product formation kinetics using Leudeking-Piret model. Simultaneous saccharificiation and fermentation of liquefied wheat bran starch to bioethanol was studied using coculture of amylolytic fungus and nonamylolytic sugar fermenting .

关键词: simultaneous saccharification and fermentation (SSF)     starch     coculture fermentation     statistical experimental design     bioethanol     Monod model    

标题 作者 时间 类型 操作

Direct ethanol production from rice straw by coculture with two high-performing fungi

Maki TAKANO, Kazuhiro HOSHINO

期刊论文

Study of simultaneous saccharification and fermentation for steam exploded wheat straw to ethanol

LUO Peng, YANG Chuanmin, LIU Zhong, WANG Gaosheng

期刊论文

Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic

K. Manikandan, T. Viruthagiri

期刊论文