Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 3 doi: 10.1016/j.eng.2019.03.004

The Deep Carbon Observatory: A Ten-Year Quest to Study Carbon in Earth

Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA

Available online: 2019-06-14

Next Previous

Figures

Fig. 1

References

[ 1 ] Hazen RM, Schiffries C. Why deep carbon? Rev Mineral Geochem 2013;75:1–6. link1

[ 2 ] Hazen RM, Jones AP, Baross JA, editors. Carbon in Earth, reviews in mineralogy and geochemisty. Chantilly: Mineralogical Society of America and Geochemical Society; 2013. link1

[ 3 ] Santoro M, Gorelli FA, Bini R, Haines J, Cambon O, Levelut C, et al. Partially collapsed cristobalite structure in the non molecular phase V in CO2. Proc Natl Acad Sci USA 2012;109(14):5176–9. link1

[ 4 ] Santoro M, Gorelli FA, Bini R, Salamat A, Garbarino G, Levelut C, et al. Carbon enters silica forming a cristobalite-type CO2-SiO2 solid solution. Nat Commun 2014;5(3761):3761. link1

[ 5 ] Boulard E, Gloter A, Corgne A, Antonangeli D, Auzende AL, Perrillat JP, et al. New host for carbon in the deep Earth. Proc Natl Acad Sci USA 2011;108 (13):5184–7. link1

[ 6 ] Boulard E, Pan D, Galli G, Liu Z, Mao WL. Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nat Commun 2015;6(6311):6311. link1

[ 7 ] Cerantola V, Bykova E, Kupenko I, Merlini M, Ismailova L, McCammon C, et al. Stability of iron-bearing carbonates in the deep Earth’s interior. Nat Commun 2017;8(15960):15960. link1

[ 8 ] Liu J, Lin JF, Prakapenka VB. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci Rep 2015;5(7640):7640. link1

[ 9 ] Lobanov SS, Dong X, Martirosyan NS, Samtsevich AI, Stevanovic V, Gavryushkin PN, et al. Raman spectroscopy and X-ray diffraction of sp3 CaCO3 at lower mantle pressures. Phys Rev B 2017;96(10):104101. link1

[10] Merlini M, Cerantola V, Gatta GD, Gemmi M, Hanfland M, Kupenko I, et al. Dolomite-IV: candidate structure for a carbonate in the Earth’s lower mantle. Am Mineral 2017;102(8):1763–6. link1

[11] Merlini M, Crichton WA, Hanfland M, Gemmi M, Müller H, Kupenko I, et al. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc Natl Acad Sci USA 2012;109(34):13509–14. link1

[12] Dorfman S, Badro J, Nabiei F, Prakapenka VB, Cantoni M, Gillet P. Carbonate stability in the reduced lower mantle. Earth Planet Sci Lett 2018;489:84–91. link1

[13] Fu S, Yang J, Lin JF. Abnormal elasticity of single-crystal magnesiosiderite across the spin transition in Earth’s lower mantle. Phys Rev Lett 2017;118 (3):036402. link1

[14] Wood B, Li J, Shahar A. Carbon in the core: its influence on the properties of core and mantle. Rev Mineral Geochem 2013;75:231–50. link1

[15] Shahar A, Schauble EA, Caracas R, Gleason AE, Reagan MM, Xiao Y, et al. Pressure-dependent isotopic composition of iron alloys. Science 2016;352 (6285):580–2. link1

[16] Chen B, Li Z, Zhang D, Liu J, Hu MY, Zhao J, et al. Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe7C3. Proc Natl Acad Sci USA 2014;111(50):17755–8. link1

[17] Dasgupta R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem 2013;75:183–229. link1

[18] Ni H, Keppler H. Carbon in silicate melts. Rev Mineral Geochem 2013;75: 251–87. link1

[19] Dasgupta R, Hirschmann M. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 2010;298(1–2):1–13. link1

[20] Thomson AR, Walter MJ, Kohn SC, Brooker RA. Slab melting as a barrier to deep carbon subduction. Nature 2016;529(7584):76–9. link1

[21] Poli S. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat Geosci 2015;8(8):633–6. link1

[22] Pan D, Spanu L, Harrison B, Sverjensky DA, Galli G. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proc Natl Acad Sci USA 2013;110(17):6646–50. link1

[23] Facq S, Daniel I, Sverjensky D. In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions. Geochim Cosmochim Acta 2014;132:375–90. link1

[24] Sverjensky D, Harrison B, Azzolini D. Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 C. Geochim Cosmochim Acta 2014;129:125–45. link1

[25] Sverjensky D, Stagno V, Huang F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat Geosci 2014;7 (12):909–13. link1

[26] Sverjensky DA, Huang F. Diamond formation due to a pH drop during fluidrock interactions. Nat Commun 2015;6(8702):8702. link1

[27] Galvez ME, Connolly JA, Manning CE. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature 2016;539(7629):420–4. link1

[28] Dolejš D. Geochemistry: ions surprise in Earth’s deep fluids. Nature 2016;539 (7629):362–4. link1

[29] Shirey S, Cartigny P, Frost D, Keshav S, Nestola F, Pearson G, et al. Diamonds and the geology of mantle carbon. Rev Mineral Geochem 2013;75:355–421. link1

[30] Smith EM, Shirey SB, Nestola F, Bullock ES, Wang J, Richardson SH, et al. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science 2016;354 (6318):1403–5. link1

[31] Weiss Y, McNeill J, Pearson DG, Nowell GM, Ottley CJ. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 2015;524 (7565):339–42. link1

[32] Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 2014;507(7491):221–4. link1

[33] Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson DG, Pamato MG, et al. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 2018;555(7695):237–41. link1

[34] Smith EM, Shirey SB, Richardson SH, Nestola F, Bullock ES, Wang J, et al. Blue boron-bearing diamonds from Earth’s lower mantle. Nature 2018;560 (7716):84–7. link1

[35] de Moor JM, Aiuppa A, Avard G, Wehrmann H, Dunbar N, Muller C, et al. Turmoil at Turrialba Volcano (Costa Rica): degassing and eruptive processes inferred from high-frequency gas monitoring. J Geophys Res Solid Earth 2016;121(8):5761–75. link1

[36] Allard P, Aiuppa A, Bani P, Métrich N, Bertagnini A, Gauthier PJ, et al. Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc. J Volcanol Geotherm Res 2015;304:378–402. link1

[37] Foley SF, Fischer TP. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat Geosci 2017;10(12):897–902. link1

[38] Lee H, Muirhead JD, Fischer TP, Ebinger CJ, Kattenhorn SA, Sharp ZD, et al. Massive and prolonged deep carbon emissions associated with continental rifting. Nat Geosci 2016;9:145–9. link1

[39] Hunt JA, Zafu A, Mather TA, Pyle DM, Barry PH. Spatially variable CO2 degassing in the Main Ethiopian Rift: implications for magma storage, volatile transport and rift-related emissions. Geochem Geophys Geosyst 2017;18 (10):3714–37. link1

[40] Brune S, Williams SE, Müller RD. Potential links between continental rifting, CO2 degassing and climate change through time. Nat Geosci 2017;10 (12):941–6. link1

[41] Le Voyer M, Kelley KA, Cottrell E, Hauri EH. Heterogeneity in mantle carbon content from CO2-undersaturated basalts. Nat Commun 2017;8:14062. link1

[42] Aiuppa A, Fischer T, Plank T, Robidoux P, Di Napoli R. Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism. Earth Sci Rev 2017;168:24–47. link1

[43] Mason E, Edmonds M, Turchyn AV. Remobilization of crustal carbon may dominate volcanic arc emissions. Science 2017;357(6348):290–4. link1

[44] Kelemen PB, Manning CE. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci USA 2015;112(30): E3997–4006. link1

[45] Johansson L, Zahirovic S, Müller RD. The interplay between the eruption and weathering of Large Igneous Provinces and the deep-time carbon cycle. Geophys Res Lett 2018;45(11):5380–9. link1

[46] Pall J, Zahirovic S, Doss S, Hassan R, Matthews KJ, Cannon J, et al. The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 since the Devonian. Clim Past 2018;14(6): 857–70. link1

[47] Müller RD, Dutkiewicz A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci Adv 2018;4(2):q0500. link1

[48] Keller T, Katz R. The role of volatiles in reactive melt transport in the asthenosphere. J Petrol 2016;57(6):1073–108. link1

[49] Keller T, Katz R, Hirschmann M. Volatiles beneath mid-ocean ridges: deep melting, channelised transport, focusing, and metasomatism. Earth Planet Sci Lett 2017;464:55–68. link1

[50] Young ED, Rumble III D, Freedman P, Mills M. A large-radius high-massresolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases. Int J Mass Spectrom 2016;401:1–10. link1

[51] Young ED, Kohl IE, Sherwood Lollar B, Etiope G, Rumble D, Li S, et al. The relative abundances of resolved 12CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases. Geochim Cosmochim Acta 2017;203:235–64. link1

[52] Wang DT, Reeves EP, McDermott JM, Seewald JS, Ono S. Clumped isotopologue constraints on the origin of methane at seafloor hot springs. Geochim Cosmochim Acta 2018;223:141–58. link1

[53] Ono S, Wang DT, Gruen DS, Sherwood Lollar B, Zahniser MS, McManus BJ, et al. Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy. Anal Chem 2014;86 (13):6487–94. link1

[54] Wang DT, Gruen DS, Sherwood Lollar B, Hinrichs KU, Stewart LC, Holden JF, et al. Methane cycling. Nonequilibrium clumped isotope signals in microbial methane. Science 2015;348(6233):428–31. link1

[55] Le T, Striolo A, Turner CH, Cole DR. Confinement effects on carbon dioxide methanation: a novel mechanism for abiotic methane formation. Sci Rep 2017;7(1):9021. link1

[56] McCollom TM. Abiotic methane formation during experimental serpentinization of olivine. Proc Natl Acad Sci USA 2016;113(49):13965–70. link1

[57] Etiope G, Ifandi E, Nazzari M, Procesi M, Tsikouras B, Ventura G, et al. Widespread abiotic methane in chromitites. Sci Rep 2018;8(1):8728. link1

[58] Früh-Green GL, Orcutt BN, Green SL, Cotterill C, Morgan S, Akizawa N, et al. Expedition 357 summary. Proceed Inter Ocean Discov Prog 2017:375. link1

[59] Ménez B, Pisapia C, Andreani M, Jamme F, Vanbellingen QP, Brunelle A, et al. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 2018;564(7734):59–63. link1

[60] Holland G, Sherwood Lollar B, Li L, Lacrampe-Couloume G, Slater GF, Ballentine CJ. Deep fracture fluids isolated in the crust since the Precambrian era. Nature 2013;497(7449):357–60. link1

[61] Sherwood Lollar B, Onstott TC, Lacrampe-Couloume G, Ballentine CJ. The contribution of the Precambrian continental lithosphere to global H2 production. Nature 2014;516(7531):379–82. link1

[62] Waite JH, Glein CR, Perryman RS, Teolis BD, Magee BA, Miller G, et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 2017;356(6334):155–9. link1

[63] Postberg F, Khawaja N, Abel B, Choblet G, Glein CR, Gudipati MS, et al. Macromolecular organic compounds from the depths of Enceladus. Nature 2018;558(7711):564–8. link1

[64] Inagaki F, Hinrichs KU, Kubo Y, Bowles MW, Heuer VB, Hong WL, et al. Exploring deep microbial life in coal-bearing sediment down to ˜2.5 km below the ocean floor. Science 2015;349(6246):420–4. link1

[65] Trembath-Reichert E, Morono Y, Ijiri A, Hoshino T, Dawson KS, Inagaki F, et al. Methyl-compound use and slow growth characterize microbial life in 2-kmdeep subseafloor coal and shale beds. Proc Nat Acad Sci USA 2017;114(44): E9206–15. link1

[66] D’Hondt S, Inagaki F, Zarikian C, Abrams LJ, Dubois N, Engelhardt T, et al. Presence of oxygen and aerobic communities from seafloor to basement in deep-sea sediment. Nat Geosci 2015;8(4):299–304. link1

[67] Starnawski P, Bataillon T, Ettema TJG, Jochum LM, Schreiber L, Chen X, et al. Microbial community assembly and evolution in subseafloor sediment. Proc Natl Acad Sci USA 2017;114(11):2940–5. link1

[68] Reveillaud J, Reddington E, McDermott J, Algar C, Meyer JL, Sylva S, et al. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ Microbiol 2016;18(6):1970–87. link1

[69] He Y, Li M, Perumal V, Feng X, Fang J, Xie J, et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol 2016;1 (6):16035. link1

[70] Anderson RE, Reveillaud J, Reddington E, Delmont TO, Eren AM, McDermott JM, et al. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat Commun 2017;8(1):1114. link1

[71] Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA 2015;112(13):4015–20. link1

[72] Magnabosco C, Lin LH, Dong H, Bomberg M, Ghiorse W, Stan-Lotter H, et al. The biomass and biodiversity of the continental subsurface. Nat Geosci 2018;11(10):707–17. link1

[73] Lau MCY, Kieft TL, Kuloyo O, Linage-Alvarez B, van Heerden E, Lindsay MR, et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc Natl Acad Sci USA 2016;113(49):E7927–36. link1

[74] Borgonie G, García-Moyano A, Litthauer D, Bert W, Bester A, van Heerden E, et al. Nematoda from the terrestrial deep subsurface of South Africa. Nature 2011;474(7349):79–82. link1

[75] Borgonie G, Linage-Alvarez B, Ojo AO, Mundle SOC, Freese LB, Van Rooyen C, et al. Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa. Nat Commun 2015;6(1):8952. link1

[76] Daly RA, Borton MA, Wilkins MJ, Hoyt DW, Kountz DJ, Wolfe RA, et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nat Microbiol 2016;1:16146. link1

[77] Smith A, Fisk M, Thurber A, Flores GE, Mason O, Popa R, et al. Deep crustal communities of the Juan de Fuca Ridge are governed by mineralogy. Geomicrobiol J 2016:147–56. link1

[78] Bourges AC, Torres Montaguth OE, Ghosh A, Tadesse WM, Declerck N, Aertsen A, et al. High pressure activation of the Mrr restriction endonuclease in Escherichia coli involves tetramer dissociation. Nucleic Acids Res 2017;45(9):5323–32. link1

[79] Gao M, Harish B, Berghaus M, Seymen R, Arns L, McCallum SA, et al. Temperature and pressure limits of guanosine monophosphate selfassemblies. Sci Rep 2017;7(1):9864. link1

Related Research