Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 3 doi: 10.1016/j.eng.2019.04.002

Optically Digitalized Holography: A Perspective for All-Optical Machine Learning

a Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, VIC 3001, Australia

b National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China

c Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Munich 80539, Germany

Available online: 2019-04-12

Next Previous

Figures

Fig. 1

References

[ 1 ] Gabor D. A new microscopic principle. Nature 1948;161(4098):777. link1

[ 2 ] Gabor D. Microscopy by reconstructed wave-fronts. Proc R Soc Lond A Math Phys Sci 1949;197(1051):454–87. link1

[ 3 ] Powell RL, Stetson KA. Interferometric vibration analysis by wavefront reconstruction. J Opt Soc Am 1965;55(12):1593–8. link1

[ 4 ] Baum G, Stroke GW. Optical holographic three-dimensional ultrasonography. Science 1975;189(4207):994–5. link1

[ 5 ] Leith EN, Upatnieks J. Wavefront reconstruction with diffused illumination and three-dimensional objects. J Opt Soc Am 1964;54(11):1295–301. link1

[ 6 ] Brown BR, Lohmann AW. Complex spatial filtering with binary masks. Appl Opt 1966;5(6):967–9. link1

[ 7 ] Verbeeck J, Tian H, Schattschneider P. Production and application of electron vortex beams. Nature 2010;467(7313):301–4. link1

[ 8 ] Zhang Z, You Z, Chu D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci Appl 2014;3:e213. link1

[ 9 ] Javidi B, Kuo CJ. Joint transform image correlation using a binary spatial light modulator at the Fourier plane. Appl Opt 1988;27(4):663–5. link1

[10] Downing E, Hesselink L, Ralston J, Macfarlane R. A three-color, solid-state, three-dimensional display. Science 1996;273(5279):1185–9. link1

[11] Li J, Kamin S, Zheng G, Neubrech F, Zhang S, Liu N. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv 2018;4 (6):eaar6768. link1

[12] Rosen J, Brooker G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat Photonics 2008;2(3):190–5. link1

[13] Heanue JF, Bashaw MC, Hesselink L. Volume holographic storage and retrieval of digital data. Science 1994;265(5173):749–52. link1

[14] Grier DG. A revolution in optical manipulation. Nature 2003;424(6950):810–6. link1

[15] Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 2013;4:2807. link1

[16] Li X, Zhang Q, Chen X, Gu M. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci Rep 2013;3:2819. link1

[17] Li X, Ren H, Chen X, Liu J, Li Q, Li C, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun 2015;6:6984. link1

[18] Li X, Liu J, Cao L, Wang Y, Jin G, Gu M. Light-control-light nanoplasmonic modulator for 3D micro-optical beam shaping. Adv Opt Mater 2016;4(1): 70–5. link1

[19] Wang S, Ouyang X, Feng Z, Cao Y, Gu M, Li X. Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron Adv 2018;1 (2):170002. link1

[20] Zhang Q, Yu H, Barbiero M, Wang B, Gu M. Artificial neural networks enabled by nanophotonics. Light Sci Appl. In press. link1

[21] Gu M, Zhang Q, Lamon S. Nanomaterials for optical data storage. Nat Rev Mater 2016;1:16070. link1

[22] Gu M. Advanced optical imaging theory. Berlin: Springer; 2000. link1

[23] Lin H, Jia B, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt Lett 2011;36(3):406–8. link1

[24] Gu M, Lin H, Li X. Parallel multiphoton microscopy with cylindrically polarized multifocal arrays. Opt Lett 2013;38(18):3627–30. link1

[25] Ren H, Lin H, Li X, Gu M. Three-dimensional parallel recording with a Debye diffraction-limited and aberration-free volumetric multifocal array. Opt Lett 2014;39(6):1621–4. link1

[26] Gan Z, Cao Y, Evans RA, Gu M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun 2013;4:2061. link1

[27] Yue Z, Xue G, Liu J, Wang Y, Gu M. Nanometric holograms based on a topological insulator material. Nat Commun 2017;8:15354. link1

[28] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60–88. link1

[29] Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 2018;559(7715):547–55. link1

[30] Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 2012;29(6):82–97. link1

[31] Psaltis D, Brady D, Gu XG, Lin S. Holography in artificial neural networks. Nature 1990;343(6256):325–30. link1

[32] Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, et al. All-optical machine learning using diffractive deep neural networks. Science 2018;361 (6406):1004–8. link1

[33] Goi E, Gu M. Laser printing of a nano-imager to perform full optical machine learning [presentation]. In: Conference on Lasers and Electro-Optics/Europe; 2019 Jun 23–27; Munich, Germany; 2019.

[34] Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, et al. Machine-learning reprogrammable metasurface imager. Nat Commun 2019;10(1):1082. link1

[35] Haas H, Yin L, Wang Y, Chen C. What is LiFi? J Lightwave Technol 2015;34 (6):1533–44. link1

[36] Shen Y, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics 2017;11:441–6. link1

Related Research