Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 5 doi: 10.1016/j.eng.2020.03.003

Plant Pathogens Utilize Effectors to Hijack the Host Endoplasmic Reticulum as Part of Their Infection Strategy

a Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
b Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China

Available online: 2020-03-12

Next Previous

Figures

Fig. 1

References

[ 1 ] Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2008;7 (12):1013–30. link1

[ 2 ] Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012;13(2):89–102. link1

[ 3 ] Kamauchi S, Nakatani H, Nakano C, Urade R. Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana. FEBS J 2005;272 (13):3461–76. link1

[ 4 ] Martínez IM, Chrispeels MJ. Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell 2003;15(2):561–76. link1

[ 5 ] Vitale A, Boston RS. Endoplasmic reticulum quality control and the unfolded protein response: insights from plants. Traffic 2008;9(10):1581–8. link1

[ 6 ] Kabbage M, Williams B, Dickman MB. Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog 2013;9(4):e1003287. link1

[ 7 ] Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Häweker H, et al. Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J 2009;28(21):3439–49. link1

[ 8 ] Nekrasov V, Li J, Batoux M, Roux M, Chu ZH, Lacombe S, et al. Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO J 2009;28(21):3428–38. link1

[ 9 ] Li J, Zhao-Hui C, Batoux M, Nekrasov V, Roux M, Chinchilla D, et al. Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc Natl Acad Sci USA 2009;106(37):15973–8. link1

[10] Moreno AA, Mukhtar MS, Blanco F, Boatwright JL, Moreno I, Jordan MR, et al. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS ONE 2012;7(2):e31944. link1

[11] Gaguancela OA, Zúñiga LP, Arias AV, Halterman D, Flores FJ, Johansen IE, et al. The IRE1/bZIP60 pathway and Bax inhibitor 1 suppress systemic accumulation of Potyviruses and Potexviruses in Arabidopsis and Nicotiana benthamiana plants. Mol Plant Microbe Interact 2016;29(10):750–66. link1

[12] Zhang L, Chen H, Brandizzi F, Verchot J, Wang A. The UPR branch IRE1-bZIP60 in plants plays an essential role in viral infection and is complementary to the only UPR pathway in yeast. PLoS Genet 2015;11(4):e1005164. link1

[13] Ye C, Dickman MB, Whitham SA, Payton M, Verchot J. The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol 2011;156(2):741–55. link1

[14] Tateda C, Ozaki R, Onodera Y, Takahashi Y, Yamaguchi K, Berberich T, et al. NtbZIP60, an endoplasmic reticulum-localized transcription factor, plays a role in the defense response against bacterial pathogens in Nicotiana tabacum. J Plant Res 2008;121(6):603–11. link1

[15] Sun L, Yang ZT, Song ZT, Wang MJ, Sun L, Lu SJ, et al. The plant-specific transcription factor gene NAC103 is induced by bZIP60 through a new cisregulatory element to modulate the unfolded protein response in Arabidopsis. Plant J 2013;76(2):274–86. link1

[16] Jing M, Guo B, Li H, Yang B, Wang H, Kong G, et al. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant binding immunoglobulin proteins. Nat Commun 2016;7(1):11685. link1

[17] Park CJ, Bart R, Chern M, Canlas PE, Bai W, Ronald PC. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS ONE 2010;5(2):e9262. link1

[18] Liebrand TW, Kombrink A, Zhang Z, Sklenar J, Jones AM, Robatzek S, et al. Chaperones of the endoplasmic reticulum are required for Ve1-mediated resistance to Verticillium. Mol Plant Pathol 2014;15(1):109–17. link1

[19] Qiu Y, Xi J, Du L, Roje S, Poovaiah BW. A dual regulatory role of Arabidopsis calreticulin-2 in plant innate immunity. Plant J 2012;69(3):489–500. link1

[20] Caplan JL, Zhu X, Mamillapalli P, Marathe R, Anandalakshmi R, Dinesh-Kumar SP. Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants. Cell Host Microbe 2009;6(5):457–69. link1

[21] Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J, Moore J, et al. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 2011;333(6042):596–601. link1

[22] Block A, Toruño TY, Elowsky CG, Zhang C, Steinbrenner J, Beynon J, et al. The Pseudomonas syringae type III effector HopD1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the Arabidopsis transcription factor NTL9. New Phytol 2014;201(4):1358–70. link1

[23] McLellan H, Boevink PC, Armstrong MR, Pritchard L, Gomez S, Morales J, et al. An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathog 2013;9(10):e1003670. link1

[24] Höwing T, Huesmann C, Hoefle C, Nagel MK, Isono E, Hückelhoven R, et al. Endoplasmic reticulum KDEL-tailed cysteine endopeptidase 1 of Arabidopsis (AtCEP1) is involved in pathogen defense. Front Plant Sci 2014;5:58. link1

[25] Fan G, Yang Y, Li T, Lu W, Du Y, Qiang X, et al. A Phytophthora capsici RXLR effector targets and inhibits a plant PPIase to suppress endoplasmic reticulummediated immunity. Mol Plant 2018;11(8):1067–83. link1

[26] Pan Q, Cui B, Deng F, Quan J, Loake GJ, Shan W. RTP1 encodes a novel endoplasmic reticulum (ER)-localized protein in Arabidopsis and negatively regulates resistance against biotrophic pathogens. New Phytol 2016;209(4):1641–54. link1

[27] Shindo T, Misas-Villamil JC, Hörger AC, Song J, Van der Hoorn RAL. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PLoS ONE 2012;7(1):e29317. link1

[28] Pogorelko GV, Juvale PS, Rutter WB, Hütten M, Maier TR, Hewezi T, et al. Re-targeting of a plant defense protease by a cyst nematode effector. Plant J 2019;98(6):1000–14. link1

[29] Srivastava R, Deng Y, Shah S, Rao AG, Howell SH. Binding protein is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. Plant Cell 2013;25(4):1416–29. link1

[30] Howell SH. Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol 2013;64(1):477–99. link1

[31] Xu G, Li S, Xie K, Zhang Q, Wang Y, Tang Y, et al. Plant ERD2-like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity. Plant J 2012;72(1):57–69. link1

[32] Horbach R, Navarro-Quesada AR, Knogge W, Deising HB. When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol 2011;168(1):51–62. link1

[33] De Jong MF, Starr T, Winter MG, den Hartigh AB, Child R, Knodler LA, et al. Sensing of bacterial type IV secretion via the unfolded protein response. MBio 2013;4(1). e00418–12. link1

[34] Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 2000;290(5499):2105–10. link1

[35] Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 2013;4:248. link1

[36] Reis PA, Carpinetti PA, Freitas PP, Santos EG, Camargos LF, Oliveira IH, et al. Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants. BMC Plant Biol 2016;16 (1):156. link1

[37] Yang ZT, Wang MJ, Sun L, Lu SJ, Bi DL, Sun L, et al. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genet 2014;10(3):e1004243. link1

[38] Zheng XY, Zhou M, Yoo H, Pruneda-Paz JL, Spivey NW, Kay SA, et al. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proc Natl Acad Sci USA 2015;112(30):9166–73. link1

[39] He Z, Li L, Luan S. Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol 2004;134(4):1248–67. link1

[40] Mokryakova MV, Pogorelko GV, Bruskin SA, Piruzian ES, Abdeeva IA. The role of peptidyl-prolyl cis/trans isomerase genes of Arabidopsis thaliana in plant defense during the course of Xanthomonas campestris infection. Russ J Genet 2014;50(2):140–8. link1

[41] Pogorelko GV, Mokryakova M, Fursova OV, Abdeeva I, Piruzian ES, Bruskin SA. Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae. Gene 2014;538 (1):12–22. link1

[42] Coaker G, Falick A, Staskawicz B. Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 2005;308(5721):548–50. link1

[43] Kong GH, Zhao Y, Jing MF, Huang J, Yang J, Xia YQ, et al. The activation of Phytophthora effector Avr3b by plant cyclophilin is required for the nudix hydrolase activity of Avr3b. PLoS Pathog 2015;11(8):e1005139. link1

[44] Denecke J, Carlsson LE, Vidal S, Höglund AS, Ek B, Van Zeijl MJ, et al. The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 1995;7(4):391–406. link1

[45] Chen L, Hamada S, Fujiwara M, Zhu T, Thao NP, Wong HL, et al. The Hop/Sti1- Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 2010;7(3):185–96. link1

[46] Jaubert S, Milac AL, Petrescu AJ, De Almeida-Engler J, Abad P, Rosso MN. In planta secretion of a calreticulin by migratory and sedentary stages of rootknot nematode. Mol Plant Microbe Interact 2005;18(12):1277–84. link1

[47] Jaouannet M, Magliano M, Arguel MJ, Gourgues M, Evangelisti E, Abad P, et al. The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. Mol Plant Microbe Interact 2013;26(1):97–105. link1

[48] Naresha S, Suryawanshi A, Agarwal M, Singh BP, Joshi P. Mapping the complement C1q binding site in Haemonchus contortus calreticulin. Mol Biochem Parasitol 2009;166(1):42–6. link1

[49] Ramírez G, Valck C, Ferreira VP, López N, Ferreira A. Extracellular Trypanosoma cruzi calreticulin in the host-parasite interplay. Trends Parasitol 2011;27 (3):115–22. link1

[50] Valck C, Ramírez G, López N, Ribeiro CH, Maldonado I, Sánchez G, et al. Molecular mechanisms involved in the inactivation of the first component of human complement by Trypanosoma cruzi calreticulin. Mol Immunol 2010;47 (7–8):1516–21. link1

Related Research