Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 1 doi: 10.1016/j.eng.2020.06.025

Engineering Research Progress of Electrochemical Microreaction Technology—A Novel Method for Electrosynthesis of Organic Chemicals

State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

Received: 2019-11-16 Revised: 2020-05-31 Accepted: 2020-06-19 Available online: 2020-12-08

Next Previous

Abstract

Electrochemical methods are environmentally friendly and have unique advantages in the synthesis of organic chemicals. However, their implementation is limited due to the complex transport problems posed by traditional electrochemical reactors. Recently, the application of microreaction technology in electrosynthesis studies has reduced the transport distance of ions and increased the specific surface area of electrodes, leading to efficient, successive, and easily scaled-up electrosynthesis technologies. In this review article, engineering advantages of using microchannels in electrosynthesis are discussed from process enhancement perspective. Flow patterns and mass transfer behaviors in recently reported electrochemical microreactors are analyzed, and prototypes for the reactor scale-up are reviewed. As a relatively new research area, many scientific rules and engineering features of electrosynthesis in microreactors require elucidation. Potential research foci, considered crucial for the development of novel electrosynthesis technology, are therefore proposed.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Walsh FC, Ponce de León C. Progress in electrochemical flow reactors for laboratory and pilot scale processing. Electrochim Acta 2018;280:121–48. link1

[ 2 ] Hardwick T, Ahmed N. Advances in electro- and sono-microreactors for chemical synthesis. RSC Adv 2018;8(39):22233–49. link1

[ 3 ] Xiang J, Shang M, Kawamata Y, Lundberg H, Reisberg SH, Chen M, et al. Hindered dialkyl ether synthesis with electrogenerated carbocations. Nature 2019;573(7774):398–402. link1

[ 4 ] Peters BK, Rodriguez KX, Reisberg SH, Beil SB, Hickey DP, Kawamata Y, et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 2019;363(6429):838–45. link1

[ 5 ] Yoshida J, Suga S. Basic concepts of ‘‘cation pool” and ‘‘cation flow” methods and their applications in conventional and combinatorial organic synthesis. Chemistry 2002;33(40):289. link1

[ 6 ] Arai K, Watts K, Wirth T. Difluoro- and trifluoromethylation of electrondeficient alkenes in an electrochemical microreactor. ChemistryOpen 2014;3 (1):23–8. link1

[ 7 ] Atobe M, Tateno H, Matsumura Y. Applications of flow microreactors in electrosynthetic processes. Chem Rev 2018;118(9):4541–72. link1

[ 8 ] Kawamata Y, Yan M, Liu Z, Bao DH, Chen J, Starr JT, et al. Scalable, electrochemical oxidation of unactivated C–H bonds. J Am Chem Soc 2017;139(22):7448–51. link1

[ 9 ] Rosen BR, Werner EW, O’Brien AG, Baran PS. Total synthesis of dixiamycin B by electrochemical oxidation. J Am Chem Soc 2014;136(15):5571–4. link1

[10] Watts K, Gattrell W, Wirth T. A practical microreactor for electrochemistry in flow. Beilstein J Org Chem 2011;7:1108–14. link1

[11] Beck F, Guthke H. Development of new cells for electroorganic syntheses. Chemie Ingenieur Technik 1969;41(17):943–50. Germany. link1

[12] Pletcher D, Green RA, Brown RCD. Flow electrolysis cells for the synthetic organic chemistry laboratory. Chem Rev 2018;118(9):4573–91. link1

[13] Noël T, Cao Y, Laudadio G. The fundamentals behind the use of flow reactors in electrochemistry. Acc Chem Res 2019;52(10):2858–69. link1

[14] Qu Y, Tsuneishi C, Tateno H, Matsumura Y, Atobe M. Green synthesis of aamino acids by electrochemical carboxylation of imines in a flow microreactor. React Chem Eng 2017;2(6):871–5. link1

[15] Laudadio G, de Smet W, Struik L, Cao Y, Noël T. Design and application of a modular and scalable electrochemical flow microreactor. J Flow Chem 2018;8 (3–4):157–65. link1

[16] Wang D, Wang P, Wang S, Chen YH, Zhang H, Lei A. Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor. Nat Commun 2019;10(1):2796. link1

[17] Ren S, Joulié D, Salvatore D, Torbensen K, Wang M, Robert M, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019;365(6451):367–9. link1

[18] Tateno H, Matsumura Y, Nakabayashi K, Senboku H, Atobe M. Development of a novel electrochemical carboxylation system using a microreactor. RSC Adv 2015;5(119):98721–3. link1

[19] Folgueiras-Amador AA, Qian XY, Xu HC, Wirth T. Catalyst- and supportingelectrolyte-free electrosynthesis of benzothiazoles and thiazolopyridines in continuous flow. Chemistry 2018;24(2):487–91. link1

[20] Arai K, Wirth T. Rapid electrochemical deprotection of the isonicotinyloxycarbonyl group from carbonates and thiocarbonates in a microfluidic reactor. Org Process Res Dev 2014;18(11):1377–81. link1

[21] Mizuno M, Tateno H, Matsumura Y, Atobe M. Synthesis and molecular weight control of poly(3-hexylthiophene) using electrochemical polymerization in a flow microreactor. React Chem Eng 2017;2(5):642–5. link1

[22] García-Espinoza JD, Robles I, Gil V, Becerril-Bravo E, Barrios JA, Godínez LA. Electrochemical degradation of triclosan in aqueous solution. A study of the performance of an electro-Fenton reactor. J Environ Chem Eng 2019;7 (4):103228. link1

[23] Küpper M, Hessel V, Löwe H, Stark W, Kinkel J, Michel M, et al. Micro reactor for electroorganic synthesis in the simulated moving bed-reaction and separation environment. Electrochim Acta 2003;48(20–22):2889–96. link1

[24] Green RA, Brown RCD, Pletcher D. Electrosynthesis in extended channel length microfluidic electrolysis cells. J Flow Chem 2016;6(3):191–7. link1

[25] Recio FJ, Herrasti P, Sirés I, Kulak AN, Bavykin DV, Ponce-de-León C, et al. The preparation of PbO2 coatings on reticulated vitreous carbon for the electrooxidation of organic pollutants. Electrochim Acta 2011;56(14):5158–65. link1

[26] Ponce-de-León C, Reade GW, Whyte I, Male SE, Walsh FC. Characterization of the reaction environment in a filter-press redox flow reactor. Electrochim Acta 2007;52(19):5815–23. link1

[27] Watt-Smith MJ, Ridley P, Wills RGA, Shah AA, Walsh FC. The importance of key operational variables and electrolyte monitoring to the performance of an all vanadium redox flow battery. J Chem Technol Biotechnol 2013;88(1):126–38. link1

[28] Teng Q, Sun Y, Yao Y, Tang HT, Li JR, Pan YM. Metal- and catalyst-free electrochemical synthesis of quinazolinones from alkenes and 2- aminobenzamides. Chem Electro Chem 2019;6(12):3120–4. link1

[29] Kabeshov MA, Musio B, Ley SV. Continuous direct anodic flow oxidation of aromatic hydrocarbons to benzyl amides. React Chem Eng 2017;2(6):822–5. link1

[30] He P, Watts P, Marken F, Haswell SJ. Self-supported and clean one-step cathodic coupling of activated olefins with benzyl bromide derivatives in a micro flow reactor. Angew Chem Int Ed 2006;118(25):4252–5. link1

[31] He P, Watts P, Marken F, Haswell SJ. Electrolyte free electro-organic synthesis: the cathodic dimerisation of 4-nitrobenzylbromide in a micro-gap flow cell. Electrochem Commun 2005;7(9):918–24. link1

[32] Amemiya F, Horii D, Fuchigami T, Atobe M. Self-supported paired electrosynthesis using a microflow reactor without intentionally added electrolyte. J Electrochem Soc 2008;155(11):E162. link1

[33] Hashemi SMH, Karnakov P, Hadikhani P, Chinello E, Litvinov S, Moser C, et al. A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine. Energy Environ Sci 2019;12(5):1592–604. link1

[34] Islam M, Kariuki BM, Shafiq Z, Wirth T, Ahmed N. Efficient electrosynthesis of thiazolidin-2-imines via oxysulfurization of thiourea-tethered terminal alkenes using the flow microreactor. Eur J Org Chem 2019;2019(6):1371–6. link1

[35] Kuleshova J, Hill-Cousins JT, Birkin PR, Brown RCD, Pletcher D, Underwood TJ. A simple and inexpensive microfluidic electrolysis cell. Electrochim Acta 2011;56(11):4322–6. link1

[36] Suga S, Okajima M, Fujiwara K, Yoshida J. Electrochemical combinatorial organic syntheses using microflow systems. QSAR Comb Sci 2005;24 (6):728–41. link1

[37] Makarshin LL, Pai ZP, Parmon VN. Microchannel systems for fine organic synthesis. Russ Chem Rev 2016;85(2):139–55. link1

[38] Tanaka K, Yoshizawa H, Atobe M. A flow microreactor approach to a highly efficient Diels–Alder reaction with an electrogenerated o-quinone. Synlett 2019;30(10):1194–8. link1

[39] Momeni S, Nematollahi D. Electrosynthesis of new quinone sulfonimide derivatives using a conventional batch and a new electrolyte-free flow cell. Green Chem 2018;20(17):4036–42. link1

[40] Laudadio G, Straathof NJW, Lanting MD, Knoops B, Hessel V, Noël T. An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chem 2017;19(17):4061–6. link1

[41] Gobert SRL, Kuhn S, Braeken L, Thomassen LCJ. Characterization of milli- and microflow reactors: mixing efficiency and residence time distribution. Org Process Res Dev 2017;21(4):531–42. link1

[42] Mielke E, Plouffe P, Koushik N, Eyholzer M, Gottsponer M, Kockmann N, et al. Local and overall heat transfer of exothermic reactions in microreactor systems. React Chem Eng 2017;2(5):763–75. link1

[43] Gütz C, Stenglein A, Waldvogel SR. Highly modular flow cell for electroorganic synthesis. Org Process Res Dev 2017;21(5):771–8. link1

[44] Baumann M, Baxendale IR. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. Beilstein J Org Chem 2015;11:1194–219. link1

[45] Britton J, Raston CL. Multi-step continuous-flow synthesis. Chem Soc Rev 2017;46(5):1250–71. link1

[46] Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noël T. Liquid phase oxidation chemistry in continuous-flow microreactors. Chem Soc Rev 2016;45 (1):83–117. link1

[47] Green RA, Pletcher D, Leach SG, Brown RCD. N-heterocyclic carbene-mediated microfluidic oxidative electrosynthesis of amides from aldehydes. Org Lett 2016;18(5):1198–201. link1

[48] Mo Y, Jensen KF. Continuous N-hydroxyphthalimide (NHPI)-mediated electrochemical aerobic oxidation of benzylic C–H bonds. Chemistry 2018;24 (40):10260–5. link1

[49] Rebrov EV, Klinger EA, Berenguer-Murcia A, Sulman EM, Schouten JC. Selective hydrogenation of 2-methyl-3-butyne-2-ol in a wall-coated capillary microreactor with a Pd25Zn75/TiO2 catalyst. Org Process Res Dev 2009;13 (5):991–8. link1

[50] Tadepalli S, Halder R, Lawal A. Catalytic hydrogenation of o-nitroanisole in a microreactor: reactor performance and kinetic studies. Chem Eng Sci 2007;62 (10):2663–78. link1

[51] Mandal MM, Aggarwal P, Nigam KDP. Liquid–liquid mixing in coiled flow inverter. Ind Eng Chem Res 2011;50(23):13230–5. link1

[52] Mansour M, Khot P, Thévenin D, Nigam KDP, Zähringer K. Optimal Reynolds number for liquid–liquid mixing in helical pipes. Chem Eng Sci 2020;214:114522. link1

[53] Xie Y, Chindam C, Nama N, Yang S, Lu M, Zhao Y, et al. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid–liquid extraction with a microfluidic device. Sci Rep 2015;5:12572. link1

[54] Yoon SK, Choban ER, Kane C, Tzedakis T, Kenis PJA. Laminar flow-based electrochemical microreactor for efficient regeneration of nicotinamide cofactors for biocatalysis. J Am Chem Soc 2005;127(30):10466–7. link1

[55] Amemiya F, Matsumoto H, Fuse K, Kashiwagi T, Kuroda C, Fuchigami T, et al. Product selectivity control induced by using liquid–liquid parallel laminar flow in a microreactor. Org Biomol Chem 2011;9(11):4256–65. link1

[56] Matsumura Y, Kakizaki Y, Tateno H, Kashiwagi T, Yamaji Y, Atobe M. Continuous in situ electrogenaration of a 2-pyrrolidone anion in a microreactor: application to highly efficient monoalkylation of methyl phenylacetate. RSC Adv 2015;5(117):96851–4. link1

[57] Folgueiras-Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T. An easy-tomachine electrochemical flow microreactor: efficient synthesis of isoindolinone and flow functionalization. Angew Chem Int Ed 2017;56(48):15446–50. link1

[58] Horii D, Atobe M, Fuchigami T, Marken F. Self-supported paired electrosynthesis of 2,5-dimethoxy-2,5-dihydrofuran using a thin layer flow cell without intentionally added supporting electrolyte. Electrochem Commun 2005;7(1):35–9. link1

[59] Wouters B, Hereijgers J, De Malsche W, Breugelmans T, Hubin A. Electrochemical characterisation of a microfluidic reactor for cogeneration of chemicals and electricity. Electrochim Acta 2016;210:337–45. link1

[60] Krˇišt’ál J, Kody´m R, Bouzek K, Jirˇicˇny´ V. Electrochemical microreactor and gasevolving reactions. Electrochem Commun 2008;10(2):204–7.

[61] Yao C, Dong Z, Zhao Y, Chen G. Gas–liquid flow and mass transfer in a microchannel under elevated pressures. Chem Eng Sci 2015;123:137–45. link1

[62] Abolhasani M, Günther A, Kumacheva E. Microfluidic studies of carbon dioxide. Angew Chem Int Ed 2014;53(31):7992–8002. link1

[63] Nieves-Remacha MJ, Kulkarni AA, Jensen KF. Gas–liquid flow and mass transfer in an advanced-flow reactor. Ind Eng Chem Res 2013;52(26):8996–9010. link1

[64] Sui J, Yan J, Liu D, Wang K, Luo G. Continuous synthesis of nanocrystals via flow chemistry technology. Small 2019;16(15):1902828. link1

[65] Schwolow S, Mutsch B, Kockmann N, Röder T. Model-based scale-up and reactor design for solvent-free synthesis of an ionic liquid in a millistructured flow reactor. React Chem Eng 2019;4(3):523–36. link1

[66] Qiu M, Zha L, Song Y, Xiang L, Su Y. Numbering-up of capillary microreactors for homogeneous processes and its application in free radical polymerization. React Chem Eng 2019;4(2):351–61. link1

[67] Shen Q, Zhang C, Tahir MF, Jiang S, Zhu C, Ma Y, et al. Numbering-up strategies of micro-chemical process: uniformity of distribution of multiphase flow in parallel microchannels. Chem Eng Process Process Intensif 2018;132:148–59. link1

[68] Kriel FH, Woollam S, Gordon RJ, Grant RA, Priest C. Numbering-up Y–Y microfluidic chips for higher-throughput solvent extraction of platinum (IV) chloride. Microfluid Nanofluid 2016;20(10):138. link1

[69] Conchouso D, Castro D, Khan SA, Foulds IG. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab Chip 2014;14(16):3011–20. link1

[70] Scialdone O, Galia A, Sabatino S, Mira D, Amatore C. Electrochemical conversion of dichloroacetic acid to chloroacetic acid in a microfluidic stack and in a series of microfluidic reactors. Chem Electro Chem 2015;2(5):684–90. link1

[71] Matsuoka A, Noishiki K, Mae K. Experimental study of the contribution of liquid film for liquid–liquid Taylor flow mass transfer in a microchannel. Chem Eng Sci 2016;155:306–13. link1

[72] Li W, Nie Z, Zhang H, Paquet C, Seo M, Garstecki P, et al. Screening of the effect of surface energy of microchannels on microfluidic emulsification. Langmuir 2007;23(15):8010–4. link1

[73] Tostado CP, Xu J, Luo G. The effects of hydrophilic surfactant concentration and flow ratio on dynamic wetting in a T-junction microfluidic device. Chem Eng J 2011;171(3):1340–7. link1

[74] Wang K, Luo G. Microflow extraction: a review of recent development. Chem Eng Sci 2017;169:18–33. link1

[75] Barwe S, Weidner J, Cychy S, Morales DM, Dieckhöfer S, Hiltrop D, et al. Electrocatalytic oxidation of 5-(hydroxymethyl)furfural using high-surface-area nickel boride. Angew Chem Int Ed 2018;57 (35):11460–4. link1

[76] Green SK, Lee J, Kim HJ, Tompsett GA, Kim WB, Huber GW. The electrocatalytic hydrogenation of furanic compounds in a continuous electrocatalytic membrane reactor. Green Chem 2013;15(7):1869–79. link1

Related Research