Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 5 doi: 10.1016/j.eng.2021.02.004

Host–Guest Molecular Recognition at Liquid–Liquid Interfaces

a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
b Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
c Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Received: 2020-08-01 Revised: 2020-11-19 Accepted: 2021-02-08 Available online: 2021-03-24

Next Previous

Abstract

Host–guest molecular recognition at the liquid–liquid interface endows the interface with unique properties, including stimuli-responsiveness and self-regulation, due to the dynamic and reversible nature of non-covalent interactions. Increasing research efforts have been put into the preparation of supramolecular interfacial systems such as films and microcapsules by integrating functional components (e.g., colloidal particles, polymers) at the interface, providing tremendous opportunities in the areas of encapsulation, delivery vehicles, and biphasic reaction systems. In this review, we summarize recent progress in supramolecular interfacial systems assembled by host–guest chemistry, and provide an overview of the fabrication process, functions, and promising applications of the resultant constructs.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

References

[ 1 ] Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Cucurbituril-based molecular recognition. Chem Rev 2015;115(22):12320–406. link1

[ 2 ] Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH. Carbohydrates in supramolecular chemistry. Chem Rev 2016;116(4):1693–752. link1

[ 3 ] Huang Z, Qin B, Chen L, Xu JF, Faul CFJ, Zhang X. Supramolecular polymerization from controllable fabrication to living polymerization. Macromol Rapid Commun 2017;38(17):1700312. link1

[ 4 ] Lehn JM. Supramolecular chemistry. Science 1993;260(5115):1762–3. link1

[ 5 ] Yu G, Jie K, Huang F. Supramolecular amphiphiles based on host–guest molecular recognition motifs. Chem Rev 2015;115(15):7240–303. link1

[ 6 ] Evans NH, Beer PD. Advances in anion supramolecular chemistry: from recognition to chemical applications. Angew Chem Int Ed Engl 2014;53 (44):11716–54. link1

[ 7 ] Zheng B, Wang F, Dong S, Huang F. Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev 2012;41(5):1621–36. link1

[ 8 ] Yang H, Yuan B, Zhang X, Scherman OA. Supramolecular chemistry at interfaces: host–guest interactions for fabricating multifunctional biointerfaces. Acc Chem Res 2014;47(7):2106–15. link1

[ 9 ] Liu J, Lan Y, Yu Z, Tan CSY, Parker RM, Abell C, et al. Cucurbit[n]uril-based microcapsules self-assembled within microfluidic droplets: a versatile approach for supramolecular architectures and materials. Acc Chem Res 2017;50(2):208–17. link1

[10] Ren X, Yu Z, Wu Y, Liu J, Abell C, Scherman OA. Cucurbit[7]uril-based highperformance catalytic microreactors. Nanoscale 2018;10(31):14835–9. link1

[11] Le NDB, Yesilbag Tonga G, Mout R, Kim ST, Wille ME, Rana S, et al. Cancer cell discrimination using host–guest ‘‘doubled” arrays. J Am Chem Soc 2017;139 (23):8008–12. link1

[12] Gao T, Li L, Wang B, Zhi J, Xiang Y, Li G. Dynamic electrochemical control of cell capture-and-release based on redox-controlled host–guest interactions. Anal Chem 2016;88(20):9996–10001. link1

[13] Qin B, Zhang S, Song Q, Huang Z, Xu JF, Zhang X. Supramolecular interfacial polymerization: a controllable method of fabricating supramolecular polymeric materials. Angew Chem Int Ed Engl 2017;56(26):7639–43. link1

[14] Qin B, Zhang S, Huang Z, Xu JF, Zhang X. Supramolecular interfacial polymerization of miscible monomers: fabricating supramolecular polymers with tailor-made structures. Macromolecules 2018;51(5):1620–5. link1

[15] Zhang S, Qin B, Huang Z, Xu JF, Zhang X. Supramolecular emulsion interfacial polymerization. ACS Macro Lett 2019;8(2):177–82. link1

[16] Varshney R, Alam M, Agashe C, Joseph R, Patra D. Pillar[5]arene microcapsules turn on fluid flow in the presence of paraquat. Chem Commun 2020;56 (65):9284–7. link1

[17] Binks BP. Particles as surfactants-similarities and differences. Curr Opin Colloid Interface Sci 2002;7(1–2):21–41. link1

[18] Bago Rodriguez AM, Binks BP. Capsules from Pickering emulsion templates. Curr Opin Colloid Interface Sci 2019;44:107–29. link1

[19] Wu G, Liu X, Zhou P, Xu Z, Hegazy M, Huang X, et al. The construction of thiolfunctionalized DNAsomes with small molecules response and protein release. Mater Sci Eng C Mater Biol Appl 2019;99:1153–63. link1

[20] Deng R, Wang Y, Yang L, Bain CD. In situ fabrication of polymeric microcapsules by ink-jet printing of emulsions. ACS Appl Mater Interfaces 2019;11 (43):40652–61. link1

[21] Toor A, Lamb S, Helms BA, Russell TP. Reconfigurable microfluidic droplets stabilized by nanoparticle surfactants. ACS Nano 2018;12(3):2365–72. link1

[22] Yang Z, Wei J, Sobolev YI, Grzybowski BA. Systems of mechanized and reactive droplets powered by multi-responsive surfactants. Nature 2018;553 (7688):313–8. link1

[23] Qian B, Shi S, Wang H, Russell TP. Reconfigurable liquids stabilized by DNA surfactants. ACS Appl Mater Interfaces 2020;12(11):13551–7. link1

[24] Cui M, Emrick T, Russell TP. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles. Science 2013;342(6157):460–3. link1

[25] Chen D, Sun Z, Russell TP, Jin L. Coassembly kinetics of graphene oxide and block copolymers at the water/oil interface. Langmuir 2017;33(36):8961–9. link1

[26] Shi S, Russell TP. Nanoparticle assembly at liquid–liquid interfaces: from the nanoscale to mesoscale. Adv Mater 2018;30(44):e1800714. link1

[27] Forth J, Kim PY, Xie G, Liu X, Helms BA, Russell TP. Building reconfigurable devices using complex liquid–fluid interfaces. Adv Mater 2019;31(18): e1806370. link1

[28] Liu X, Kent N, Ceballos A, Streubel R, Jiang Y, Chai Y, et al. Reconfigurable ferromagnetic liquid droplets. Science 2019;365(6450):264–7. link1

[29] Cain JD, Azizi A, Maleski K, Anasori B, Glazer EC, Kim PY, et al. Sculpting liquids with two-dimensional materials: the assembly of Ti3C2Tx MXene sheets at liquid–liquid interfaces. ACS Nano 2019;13(11):12385–92. link1

[30] Feng W, Chai Y, Forth J, Ashby PD, Russell TP, Helms BA. Harnessing liquid-inliquid printing and micropatterned substrates to fabricate 3-dimensional allliquid fluidic devices. Nat Commun 2019;10(1):1095. link1

[31] Wang J, Wang D, Sobal NS, Giersig M, Jiang M, Möhwald H. Stepwise directing of nanocrystals to self-assemble at water/oil interfaces. Angew Chem Int Ed Engl 2006;45(47):7963–6. link1

[32] Zhang J, Coulston RJ, Jones ST, Geng J, Scherman OA, Abell C. One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science 2012;335(6069):690–4. link1

[33] Sun H, Li L, Russell TP, Shi S. Photoresponsive structured liquids enabled by molecular recognition at liquid–liquid interfaces. J Am Chem Soc 2020;142 (19):8591–5. link1

[34] Ramsden W. Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)—preliminary account. Proc R Soc London 1904;72:477–86. link1

[35] Pickering SU. CXCVI.—emulsions. J Chem Soc Trans 1907;91:2001–21. link1

[36] Gonzalez Ortiz D, Pochat-Bohatier C, Cambedouzou J, Bechelany M, Miele P. Current trends in Pickering emulsions: particle morphology and applications. Engineering 2020;6(4):468–82. link1

[37] Pieranski P. Two-dimensional interfacial colloidal crystals. Phys Rev Lett 1980;45(7):569–72. link1

[38] Meethal SK, Sasmal R, Pahwa M, Soumya C, Saha ND, Agasti SS. Cucurbit[7] uril-directed assembly of colloidal membrane and stimuli-responsive microcapsules at the liquid–liquid interface. Langmuir 2018;34(2):693–9. link1

[39] Arumugam P, Patra D, Samanta B, Agasti SS, Subramani C, Rotello VM. Selfassembly and cross-linking of FePt nanoparticles at planar and colloidal liquid–liquid interfaces. J Am Chem Soc 2008;130(31):10046–7. link1

[40] Patra D, Pagliuca C, Subramani C, Samanta B, Agasti SS, Zainalabdeen N, et al. Molecular recognition at the liquid–liquid interface of colloidal microcapsules. Chem Commun (Camb) 2009;28:4248–50. link1

[41] Lin Y, Skaff H, Böker A, Dinsmore AD, Emrick T, Russell TP. Ultrathin crosslinked nanoparticle membranes. J Am Chem Soc 2003;125(42):12690–1. link1

[42] Skaff H, Lin Y, Tangirala R, Breitenkamp K, Böker A, Russell TP, et al. Crosslinked capsules of quantum dots by interfacial assembly and ligand crosslinking. Adv Mater 2005;17(17):2082–6. link1

[43] Yang N, Wang ZS, Zhu ZY, Chen SC, Wu G. Polymeric microcapsules with sustainable core and hierarchical shell toward superhydrophobicity and sunlight-induced self-healing performance. Ind Eng Chem Res 2018;57 (43):14517–26. link1

[44] Bielas R, Surdeko D, Kaczmarek K, Józefczak A. The potential of magnetic heating for fabricating Pickering-emulsion-based capsules. Colloids Surf B Biointerfaces 2020;192:111070. link1

[45] Sun Q, Chen JF, Routh AF. Coated colloidosomes as novel drug delivery carriers. Expert Opin Drug Deliv 2019;16(9):903–6. link1

[46] Patra D, Sanyal A, Rotello VM. Colloidal microcapsules: self-assembly of nanoparticles at the liquid–liquid interface. Chem Asian J 2010;5 (12):2442–53. link1

[47] Patra D, Ozdemir F, Miranda OR, Samanta B, Sanyal A, Rotello VM. Formation and size tuning of colloidal microcapsules via host–guest molecular recognition at the liquid–liquid interface. Langmuir 2009;25 (24):13852–4. link1

[48] Jeong Y, Chen YC, Turksoy MK, Rana S, Tonga GY, Creran B, et al. Tunable elastic modulus of nanoparticle monolayer films by host–guest chemistry. Adv Mater 2014;26(29):5056–61. link1

[49] Bollhorst T, Rezwan K, Maas M. Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chem Soc Rev 2017;46(8):2091–126. link1

[50] Kaufman G, Montejo KA, Michaut A, Majewski PW, Osuji CO. Photoresponsive and magnetoresponsive graphene oxide microcapsules fabricated by droplet microfluidics. ACS Appl Mater Interfaces 2017;9(50):44192–8. link1

[51] Zhang H, Tumarkin E, Peerani R, Nie Z, Sullan RMA, Walker GC, et al. Microfluidic production of biopolymer microcapsules with controlled morphology. J Am Chem Soc 2006;128(37):12205–10. link1

[52] Kim BI, Jeong SW, Lee KG, Park TJ, Park JY, Song JJ, et al. Synthesis of bioactive microcapsules using a microfluidic device. Sensors 2012;12(8):10136–47. link1

[53] Stephenson G, Parker RM, Lan Y, Yu Z, Scherman OA, Abell C. Supramolecular colloidosomes: fabrication, characterisation and triggered release of cargo. Chem Commun 2014;50(53):7048–51. link1

[54] Yu Z, Lan Y, Parker RM, Zhang W, Deng X, Scherman OA, et al. Dual-responsive supramolecular colloidal microcapsules from cucurbit[8]uril molecular recognition in microfluidic droplets. Polym Chem 2016;7(38):5996–6002. link1

[55] Tong W, Song X, Gao C. Layer-by-layer assembly of microcapsules and their biomedical applications. Chem Soc Rev 2012;41(18):6103–24. link1

[56] Borges J, Mano JF. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev 2014;114(18):8883–942. link1

[57] Such GK, Johnston APR, Caruso F. Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem Soc Rev 2011;40 (1):19–29. link1

[58] Wang Z, Feng Z, Gao C. Stepwise assembly of the same polyelectrolytes using host–guest interaction to obtain microcapsules with multiresponsive properties. Chem Mater 2008;20(13):4194–9. link1

[59] Johnston APR, Read ES, Caruso F. DNA multilayer films on planar and colloidal supports: sequential assembly of like-charged polyelectrolytes. Nano Lett 2005;5(5):953–6. link1

[60] Zhang L, Zhu L, Larson SR, Zhao Y, Wang X. Layer-by-layer assembly of nanorods on a microsphere via electrostatic interactions. Soft Matter 2018;14 (22):4541–50. link1

[61] Zheng Y, Yu Z, Parker RM, Wu Y, Abell C, Scherman OA. Interfacial assembly of dendritic microcapsules with host–guest chemistry. Nat Commun 2014;5 (1):5772. link1

[62] Parker RM, Zhang J, Zheng Y, Coulston RJ, Smith CA, Salmon AR, et al. Electrostatically directed self-assembly of ultrathin supramolecular polymer microcapsules. Adv Funct Mater 2015;25(26):4091–100. link1

[63] Yu Z, Zhang J, Coulston RJ, Parker RM, Biedermann F, Liu X, et al. Supramolecular hydrogel microcapsules via cucurbit[8]uril host–guest interactions with triggered and UV-controlled molecular permeability. Chem Sci 2015;6(8):4929–33. link1

[64] Yu Z, Zheng Y, Parker RM, Lan Y, Wu Y, Coulston RJ, et al. Microfluidic dropletfacilitated hierarchical assembly for dual cargo loading and synergistic delivery. ACS Appl Mater Interfaces 2016;8(13):8811–20. link1

[65] Groombridge AS, Palma A, Parker RM, Abell C, Scherman OA. Aqueous interfacial gels assembled from small molecule supramolecular polymers. Chem Sci 2017;8(2):1350–5. link1

[66] Salmon AR, Parker RM, Groombridge AS, Maestro A, Coulston RJ, Hegemann J, et al. Microcapsule buckling triggered by compression-induced interfacial phase change. Langmuir 2016;32(42):10987–94. link1

[67] Wang LS, Gopalakrishnan S, Rotello VM. Tailored functional surfaces using nanoparticle and protein ‘‘nanobrick” coatings. Langmuir 2019;35(34):10993–1006. link1

[68] Xu H, Hong R, Lu T, Uzun O, Rotello VM. Recognition-directed orthogonal selfassembly of polymers and nanoparticles on patterned surfaces. J Am Chem Soc 2006;128(10):3162–3. link1

[69] Zhang J, Liu J, Yu Z, Chen S, Scherman OA, Abell C. Patterned arrays of supramolecular microcapsules. Adv Funct Mater 2018;28(20):1800550. link1

[70] Chai Y, Lukito A, Jiang Y, Ashby PD, Russell TP. Fine-tuning nanoparticle packing at water–oil interfaces using ionic strength. Nano Lett 2017;17 (10):6453–7. link1

[71] Cui M, Miesch C, Kosif I, Nie H, Kim PY, Kim H, et al. Transition in dynamics as nanoparticles jam at the liquid/liquid interface. Nano Lett 2017;17 (11):6855–62. link1

[72] Huang C, Cui M, Sun Z, Liu F, Helms BA, Russell TP. Self-regulated nanoparticle assembly at liquid/liquid interfaces: a route to adaptive structuring of liquids. Langmuir 2017;33(32):7994–8001. link1

[73] Toor A, Helms BA, Russell TP. Effect of nanoparticle surfactants on the breakup of free-falling water jets during continuous processing of reconfigurable structured liquid droplets. Nano Lett 2017;17(5):3119–25. link1

[74] Huang C, Chai Y, Jiang Y, Forth J, Ashby PD, Arras MML, et al. The interfacial assembly of polyoxometalate nanoparticle surfactants. Nano Lett 2018;18 (4):2525–9. link1

[75] Huang C, Sun Z, Cui M, Liu F, Helms BA, Russell TP. Structured liquids with pHtriggered reconfigurability. Adv Mater 2016;28(31):6612–8. link1

[76] Liu X, Shi S, Li Y, Forth J, Wang D, Russell TP. Liquid tubule formation and stabilization using cellulose nanocrystal surfactants. Angew Chem Int Ed Engl 2017;56(41):12594–8. link1

[77] Jiang Y, Löbling TI, Huang C, Sun Z, Müller AHE, Russell TP. Interfacial assembly and jamming behavior of polymeric Janus particles at liquid interfaces. ACS Appl Mater Interfaces 2017;9(38):33327–32. link1

[78] Jiang Y, Chakroun R, Gu P, Gröschel AH, Russell TP. Soft polymer Janus nanoparticles at liquid–liquid interfaces. Angew Chem Int Ed Engl 2020;59 (31):12751–5. link1

[79] Huang C, Forth J, Wang W, Hong K, Smith GS, Helms BA, et al. Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants. Nat Nanotechnol 2017;12(11):1060–3. link1

[80] Xu R, Liu T, Sun H, Wang B, Shi S, Russell TP. Interfacial assembly and jamming of polyelectrolyte surfactants: a simple route to print liquids in low-viscosity solution. ACS Appl Mater Interfaces 2020;12(15):18116–22. link1

[81] Shi S, Qian B, Wu X, Sun H, Wang H, Zhang HB, et al. Self-assembly of MXenesurfactants at liquid–liquid interfaces: from structured liquids to 3D aerogels. Angew Chem Int Ed Engl 2019;58(50):18171–6. link1

Related Research