Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 13, Issue 6 doi: 10.1016/j.eng.2021.02.026

Microfluidic Generation of Multicomponent Soft Biomaterials

a Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital & School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
b School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
c Shanghai Xuhui Central Hospital & Zhongshan-Xuhui Hospital & Shanghai Key Laboratory of Medical Epigenetics & International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
d Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China

Received: 2021-02-08 Revised: 2022-07-26 Accepted: 2021-11-30 Available online: 2022-04-29

Next Previous

Abstract

Soft biomaterials hold great potential for a plethora of biomedical applications because of their deformability, biodegradability, biocompatibility, high bioactivity, and low antigenicity. Multicomponent soft biomaterials are particularly attractive as a way of accommodating components made of different materials and generating combinative functions. Microfluidic technology has emerged as an outstanding tool in generating multicomponent materials with elaborate structures and constituents, in that it can manipulate multiphasic flows precisely on the micron scale. In recent decades, much progress has been achieved in the microfluidic fabrication of multicomponent soft biomaterials with finely defined physicochemical properties capable of controllable therapeutics delivery, three-dimensional (3D) cell culture, flexible devices and wearable electronics, and biosensing for molecules. In the paper, we summarize current progress in multicomponent soft biomaterials derived from microfluidics and emphasize their applications in biomedical fields. We also provide an outlook of the remaining challenges and future trends in this field.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

References

[ 1 ] Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018;558(7709):274–9. link1

[ 2 ] Li J, Wong WY, Tao XM. Recent advances in soft functional materials: preparation, functions and applications. Nanoscale 2020;12(3):1281–306. link1

[ 3 ] Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 2016;28 (22):4449–54. link1

[ 4 ] Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016;536(7617):451–5. link1

[ 5 ] Park SJ, Gazzola M, Park KS, Park S, Di Santo V, Blevins EL, et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 2016;353 (6295):158–62. link1

[ 6 ] Calvert P. Hydrogels for soft machines. Adv Mater 2009;21(7):743–56. link1

[ 7 ] Martins MCL. Properties of soft materials. In: Buddy DR, Allan SH, Frederick JS, Jack EL, editors. Biomaterials science. New York: Academic Press; 2013. p. 1483–515. link1

[ 8 ] Horike S, Shimomura S, Kitagawa S. Soft porous crystals. Nat Chem 2009;1 (9):695–704. link1

[ 9 ] Glotzer SC, Engel M. Materials science: complex order in soft matter. Nature 2011;471(7338):309–10. link1

[10] Wang A, Shi W, Huang J, Yan Y. Adaptive soft molecular self-assemblies. Soft Matter 2016;12(2):337–57. link1

[11] Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ. Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 2016;8(16):10070–87. link1

[12] He X, Lin JB, Kan WH, Dong P, Trudel S, Baumgartner T. Molecular engineering of ‘‘click”-phospholes towards self-assembled luminescent soft materials. Adv Funct Mater 2014;24(7):897–906. link1

[13] Tamate R, Mizutani Akimoto A, Yoshida R. Recent advances in self-oscillating polymer material systems. Chem Rec 2016;16(4):1852–67. link1

[14] Wallin TJ, Pikul J, Shepherd RF. 3D printing of soft robotic systems. Nat Rev Mater 2018;3(6):84–100. link1

[15] Wang Z, Li H, Tang Z, Liu Z, Ruan Z, Ma L, et al. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv Funct Mater 2018;28 (48):1804560. link1

[16] Xie W, Gao Q, Guo Z, Wang D, Gao F, Wang X, et al. Injectable and self-healing thermosensitive magnetic hydrogel for asynchronous control release of doxorubicin and docetaxel to treat triple-negative breast cancer. ACS Appl Mater Interfaces 2017;9(39):33660–73. link1

[17] Hamley IW. Nanotechnology with soft materials. Angew Chem Int Ed Engl 2003;42(15):1692–712. link1

[18] Zhu Y, James DK, Tour JM. New routes to graphene, graphene oxide and their related applications. Adv Mater 2012;24(36):4924–55. link1

[19] Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci 2001;6(1):11–6. link1

[20] Shang L, Cheng Y, Zhao Y. Emerging droplet microfluidics. Chem Rev 2017;117(12):7964–8040. link1

[21] Zhao Y, Xie Z, Gu H, Zhu C, Gu Z. Bio-inspired variable structural color materials. Chem Soc Rev 2012;41(8):3297–317. link1

[22] Li LL, Li XD, Wang H. Microfluidic synthesis of nanomaterials for biomedical applications. Small Methods 2017;1(8):1700140. link1

[23] Zhang H, Liu D, Shahbazi MA, Mäkilä E, Herranz-Blanco B, Salonen J, et al. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv Mater 2014;26(26):4497–503. link1

[24] Puigmartí-Luis J. Microfluidic platforms: a mainstream technology for the preparation of crystals. Chem Soc Rev 2014;43(7):2253–71. link1

[25] Yu YR, Fu FF, Shang LR, Cheng Y, Gu ZZ, Zhao YJ. Bio-inspired helical microfibers from microfluidics. Adv Mater 2017;29(18):1605765. link1

[26] Wang J, Sun L, Zou M, Gao W, Liu C, Shang L, et al. Bioinspired shape-memory graphene film with tunable wettability. Sci Adv 2017;3(6):1700004. link1

[27] Wang S, Liu K, Liu J, Yu ZT, Xu X, Zhao L, et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed Engl 2011;50 (13):3084–8. link1

[28] Shim JU, Ranasinghe RT, Smith CA, Ibrahim SM, Hollfelder F, Huck WT, et al. Ultrarapid generation of femtoliter microfluidic droplets for single-moleculecounting immunoassays. ACS Nano 2013;7(7):5955–64. link1

[29] Wang H, Zhao Z, Liu Y, Shao C, Bian F, Zhao Y. Biomimetic enzymes cascade reaction system in microfluidic electrospray microcapsules. Sci Adv 2018;4 (6):aat2816. link1

[30] Vasiliauskas R, Liu D, Cito S, Zhang H, Shahbazi MA, Sikanen T, et al. Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery. ACS Appl Mater Interfaces 2015;7(27):14822–32. link1

[31] Yu Y, Shang L, Gao W, Zhao Z, Wang H, Zhao Y. Microfluidic lithography of bioinspired helical micromotors. Angew Chem Int Ed Engl 2017;56 (40):12127–31. link1

[32] Song Y, Michaels TCT, Ma Q, Liu Z, Yuan H, Takayama S, et al. Budding-like division of all-aqueous emulsion droplets modulated by networks of protein nanofibrils. Nat Commun 2018;9(1):2110. link1

[33] Jo YK, Lee D. Biopolymer microparticles prepared by microfluidics for biomedical applications. Small 2019;16(9):1903736. link1

[34] Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, et al. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 2018;47 (15):5646–83. link1

[35] Du XY, Li Q, Wu G, Chen S. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv Mater 2019;31(52):1903733. link1

[36] Fu X, Hosta-Rigau L, Chandrawati R, Cui J. Multi-stimuli-responsive polymer particles, films, and hydrogels for drug delivery. Chem 2018;4(9):2084–107. link1

[37] Yuk H, Lin S, Ma C, Takaffoli M, Fang NX, Zhao X. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat Commun 2017;8(1):14230. link1

[38] Cheng C, Li D. Solvated graphenes: an emerging class of functional soft materials. Adv Mater 2013;25(1):13–30. link1

[39] Thakur VK, Thakur MK, Voicu SI. Polymer gels: science and fundamentals. Berlin: Springer; 2018. link1

[40] Bates FS, Fredrickson GH. Block copolymers—designer soft materials. Phys Today 1999;52(2):32–8. link1

[41] Zhalmuratova D, Chung HJ. Reinforced gels and elastomers for biomedical and soft robotics applications. ACS Appl Polym Mater 2020;2(3):1073–91. link1

[42] Jones CD, Steed JW. Gels with sense: supramolecular materials that respond to heat, light and sound. Chem Soc Rev 2016;45(23):6546–96. link1

[43] Liu Y, Hu Y, Zhao J, Wu G, Tao X, Chen W. Self-powered piezoionic strain sensor toward the monitoring of human activities. Small 2016;12 (36):5074–80. link1

[44] Alemán JV, Chadwick AV, He J, Hess M, Horie K, Jones RG, et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic–organic hybrid materials. Pure Appl Chem 2007;79(10):1801–29. link1

[45] Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nat Rev Mater 2020;5(1):20–43. link1

[46] Yashin VV, Kuksenok O, Balazs AC. Computational design of active, selfreinforcing gels. J Phys Chem B 2010;114(19):6316–22. link1

[47] Fang A, Cathala B. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release. Colloids Surf B Biointerfaces 2011;82(1):81–6. link1

[48] Yang CH, Huang KS, Chang JY. Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Biomed Microdevices 2007;9(2):253–9. link1

[49] Xu JH, Li SW, Tostado C, Lan WJ, Luo GS. Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in a co-axial microfluidic device. Biomed Microdevices 2009;11(1):243–9. link1

[50] Xu JH, Zhao H, Lan WJ, Luo GS. A novel microfluidic approach for monodispersed chitosan microspheres with controllable structures. Adv Healthc Mater 2012;1(1):106–11. link1

[51] Mealy JE, Chung JJ, Jeong HH, Issadore D, Lee D, Atluri P, et al. Injectable granular hydrogels with multifunctional properties for biomedical applications. Adv Mater 2018;30(20):1705912. link1

[52] Siltanen C, Yaghoobi M, Haque A, You J, Lowen J, Soleimani M, et al. Microfluidic fabrication of bioactive microgels for rapid formation and enhanced differentiation of stem cell spheroids. Acta Biomater 2016;34:125–32. link1

[53] Kim C, Park KS, Kim J, Jeong SG, Lee CS. Microfluidic synthesis of monodisperse pectin hydrogel microspheres based on in situ gelation and settling collection. J Chem Technol Biotechnol 2017;92(1):201–9. link1

[54] Kumachev A, Greener J, Tumarkin E, Eiser E, Zandstra PW, Kumacheva E. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials 2011;32(6):1477–83. link1

[55] Ke Y, Liu GS, Wang JH, Xue W, Du C, Wu G. Preparation of carboxymethyl cellulose based microgels for cell encapsulation. Express Polym Lett 2014;8 (11):841–9. link1

[56] Park KS, Kim C, Nam JO, Kang SM, Lee CS. Synthesis and characterization of thermosensitive gelatin hydrogel microspheres in a microfluidic system. Macromol Res 2016;24(6):529–36. link1

[57] Zhao X, Liu S, Yildirimer L, Zhao H, Ding R, Wang H, et al. Injectable stem cellladen photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv Funct Mater 2016;26 (17):2809–19. link1

[58] Shimanovich U, Ruggeri FS, De Genst E, Adamcik J, Barros TP, Porter D, et al. Silk micrococoons for protein stabilisation and molecular encapsulation. Nat Commun 2017;8(1):15902. link1

[59] Zhou J, Hyun DC, Liu H, Wu H, Xia Y. Protein capsules with cross-linked, semipermeable, and enzyme-degradable surface barriers for controlled release. Macromol Rapid Commun 2014;35(16):1436–42. link1

[60] Feng Y, Lee Y. Microfluidic fabrication of hollow protein microcapsules for rate-controlled release. RSC Adv 2017;7(78):49455–62. link1

[61] San Jose LH, Stephens P, Song B, Barrow D. Microfluidic encapsulation supports stem cell viability, proliferation, and neuronal differentiation. Tissue Eng Part C Methods 2018;24(3):158–70. link1

[62] Gibas I, Janik H. Review: synthetic polymer hydrogels for biomedical application. Chem Chem Technol 2010;4(4):297–304. link1

[63] Madsen FB, Yu L, Daugaard AE, Hvilsted S, Skov AL. A new soft dielectric silicone elastomer matrix with high mechanical integrity and low losses. RSC Adv 2015;5(14):10254–9. link1

[64] Ye H, Zhang K, Kai D, Li Z, Loh XJ. Polyester elastomers for soft tissue engineering. Chem Soc Rev 2018;47(12):4545–80. link1

[65] Akram N, Zia KM, Sattar R, Tabassum S, Saeed M. Thermomechanical investigation of hydroxyl-terminated polybutadiene-based linear polyurethane elastomers. J Appl Polym Sci 2019;136(13):47289. link1

[66] Xiong R, Grant AM, Ma R, Zhang S, Tsukruk VV. Naturally-derived biopolymer nanocomposites: interfacial design, properties and emerging applications. Mater Sci Eng 2018;125:1–41. link1

[67] Ninan N, Muthiah M, Park IK, Wong TW, Thomas S, Grohens Y. Natural polymer/inorganic material-based hybrid scaffolds for skin wound healing. Polym Rev 2015;55(3):453–90. link1

[68] Scheibel T. Protein fibers as performance proteins: new technologies and applications. Curr Opin Biotechnol 2005;16(4):427–33. link1

[69] Jones OG, McClements DJ. Functional biopolymer particles: design, fabrication, and applications. Compr Rev Food Sci Food Saf 2010;9(4):374–97. link1

[70] Zhao X, Harris JM. Novel degradable poly(ethylene glycol) hydrogels for controlled release of protein. J Pharm Sci 1998;87(11):1450–8. link1

[71] Underhill GH, Chen AA, Albrecht DR, Bhatia SN. Assessment of hepatocellular function within PEG hydrogels. Biomaterials 2007;28(2):256–70. link1

[72] Riley SL, Dutt S, De La Torre R, Chen AC, Sah RL, Ratcliffe A. Formulation of PEG-based hydrogels affects tissue-engineered cartilage construct characteristics. J Mater Sci Mater Med 2001;12(10–12):983–90. link1

[73] Benamer S, Mahlous M, Boukrif A, Mansouri B, Youcef SL. Synthesis and characterization of hydrogels based on poly (vinyl pyrrolidone). Nucl Instrum Methods Phys Res B 2006;248(2):284–90. link1

[74] Chen X, Li R, Wong SHD, Wei K, Cui M, Chen H, et al. Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells. Nat Commun 2019;10(1):2705. link1

[75] Feng Q, Xu J, Zhang K, Yao H, Zheng N, Zheng L, et al. Dynamic and cellinfiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects. ACS Cent Sci 2019;5(3):440–50. link1

[76] Zhang K, Yuan W, Wei K, Yang B, Chen X, Li Z, et al. Highly dynamic nanocomposite hydrogels self-assembled by metal ion–ligand coordination. Small 2019;15(15):1900242. link1

[77] Hu J, Zhang C, Li X, Han J, Ji F. Architectural evolution of phase domains in shape memory polyurethanes by dissipative particle dynamics simulations. Polym Chem 2017;8(1):260–71. link1

[78] Madsen FB, Yu L, Daugaard AE, Hvilsted S, Skov AL. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers. Polymer 2014;55(24):6212–9. link1

[79] Zhang X, Malhotra S, Molina M, Haag R. Micro- and nanogels with labile crosslinks—from synthesis to biomedical applications. Chem Soc Rev 2015;44 (7):1948–73. link1

[80] Liu H, Wang C, Gao Q, Liu X, Tong Z. Fabrication of novel core–shell hybrid alginate hydrogel beads. Int J Pharm 2008;351(1–2):104–12. link1

[81] Noh YW, Kong SH, Choi DY, Park HS, Yang HK, Lee HJ, et al. Near-infrared emitting polymer nanogels for efficient sentinel lymph node mapping. ACS Nano 2012;6(9):7820–31. link1

[82] Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci 2019;7(3):843–55. link1

[83] Morozowich NL, Nichol JL, Allcock HR. Hydrogels based on schiff base formation between an amino-containing polyphosphazene and aldehyde functionalized-dextrans. J Polym Sci A Polym Chem 2016;54 (18):2984–91. link1

[84] Wu S, Peng S, Wang CH. Multifunctional polymer nanocomposites reinforced by aligned carbon nanomaterials. Polymers 2018;10(5):542. link1

[85] Wang Y, Chen Z, Bian F, Shang L, Zhu K, Zhao Y. Advances of droplet-based microfluidics in drug discovery. Expert Opin Drug Discov 2020;15(8):969–79. link1

[86] Wang W, Chen J, Zhou J. An electrode design for droplet dispensing with accurate volume in electro-wetting-based microfluidics. Appl Phys Lett 2016;108(24):243701. link1

[87] Visser CW, Kamperman T, Karbaat LP, Lohse D, Karperien M. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. Sci Adv 2018;4(1):aao1175. link1

[88] Lee KJ, Yoon J, Lahann J. Recent advances with anisotropic particles. Curr Opin Colloid Interface Sci 2011;16(3):195–202. link1

[89] Sun XT, Yang CG, Xu ZR. Controlled production of size-tunable Janus droplets for submicron particle synthesis using an electro-spray microfluidic chip. RSC Adv 2016;6(15):12042–7. link1

[90] Nisisako T. Recent advances in microfluidic production of Janus droplets and particles. Curr Opin Colloid Interface Sci 2016;25:1–12. link1

[91] Zhang L, Chen K, Zhang H, Pang B, Choi CH, Mao AS, et al. Microfluidic templated multicompartment microgels for 3D encapsulation and pairing of single cells. Small 2018;14(9):1702955. link1

[92] Maeda K, Onoe H, Takinoue M, Takeuchi S. Controlled synthesis of 3D multicompartmental particles with centrifuge-based microdroplet formation from a multi-barrelled capillary. Adv Mater 2012;24(10):1340–6. link1

[93] Min NG, Ku M, Yang J, Kim SH. Microfluidic production of uniform microcarriers with multicompartments through phase separation in emulsion drops. Chem Mater 2016;28(5):1430–8. link1

[94] Ghosh S, Schurtenberger P. Microfluidic production of snowman-shaped Janus hydrogel particles. Colloid Surf A Physicochem Eng Asp 2019;573:205–10. link1

[95] Choi CH, Weitz DA, Lee CS. One step formation of controllable complex emulsions: from functional particles to simultaneous encapsulation of hydrophilic and hydrophobic agents into desired position. Adv Mater 2013;25(18):2536–41. link1

[96] Haase MF, Brujic J. Tailoring of high-order multiple emulsions by the liquid– liquid phase separation of ternary mixtures. Angew Chem Int Ed Engl 2014;53(44):11793–7. link1

[97] Yu X, Zhao ZL, Nie W, Deng RH, Liu SQ, Liang RJ, et al. Biodegradable polymer microcapsules fabrication through a template-free approach. Langmuir 2011;27(16):10265–73. link1

[98] Li YN, Yan D, Fu FF, Liu YX, Zhang B, Wang J, et al. Composite core–shell microparticles from microfluidics for synergistic drug delivery. Sci China Mater 2017;60(6):543–53. link1

[99] Zhou M, Shen L, Lin X, Hong Y, Feng Y. Design and pharmaceutical applications of porous particles. RSC Adv 2017;7(63):39490–501. link1

[100] Chen C, Liu Y, Wang H, Chen G, Wu X, Ren J, et al. Multifunctional chitosan inverse opal particles for wound healing. ACS Nano 2018;12(10):10493–500. link1

[101] Hwangbo KH, Kim MR, Lee CS, Cho KY. Facile fabrication of uniform golf-ballshaped microparticles from various polymers. Soft Matter 2011;7 (22):10874–8. link1

[102] Lee JH, Lee CS, Cho KY. Enhanced cell adhesion to the dimpled surfaces of golf-ball-shaped microparticles. ACS Appl Mater Interfaces 2014;6 (19):16493–7. link1

[103] Costantini M, Guzowski J, _ Zuk PJ. Electric field assisted microfluidic platform for generation of tailorable porous microbeads as cell carriers for tissue engineering. Adv Funct Mater 2018;28(20):1800874. link1

[104] Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed Engl 2005;44(5):724–8. link1

[105] Wang W, He XH, Zhang MJ, Tang MJ, Xie R, Ju XJ, et al. Controllable microfluidic fabrication of microstructured materials from nonspherical particles to helices. Macromol Rapid Commun 2017;38(23):1700429. link1

[106] Miyama A, Yamada M, Sugaya S, Seki M. A droplet-based microfluidic process to produce yarn-ball-shaped hydrogel microbeads. RSC Adv 2013;3 (30):12299–306. link1

[107] Jun Y, Kang E, Chae S, Lee SH. Microfluidic spinning of micro- and nano-scale fibers for tissue engineering. Lab Chip 2014;14(13):2145–60. link1

[108] Sharifi F, Sooriyarachchi AC, Altural H, Montazami R, Rylander MN, Hashemi N. Fiber based approaches as medicine delivery systems. ACS Biomater Sci Eng 2016;2(9):1411–31. link1

[109] Yu Y, Wen H, Ma J, Lykkemark S, Xu H, Qin J. Flexible fabrication of biomimetic bamboo-like hybrid microfibers. Adv Mater 2014;26 (16):2494–9. link1

[110] Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y. Spinning and applications of bioinspired fiber systems. ACS Nano 2019;13(3):2749–72. link1

[111] Duboin A, Middleton R, Malloggi F, Monti F, Tabeling P. Cusps, spouts and microfiber synthesis with microfluidics. Soft Matter 2013;9(11):3041–9. link1

[112] He XH, Wang W, Deng K, Xie R, Ju XJ, Liu Z, et al. Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures. RSC Adv 2015;5(2):928–36. link1

[113] Wu F, Ju XJ, He XH, Jiang MY, Wang W, Liu Z, et al. A novel synthetic microfiber with controllable size for cell encapsulation and culture. J Mater Chem B Mater Biol Med 2016;4(14):2455–65. link1

[114] Zhao JY, Xiong W, Yu N, Yang X. Continuous jetting of alginate microfiber in atmosphere based on a microfluidic chip. Micromachines 2017;8(1):8. link1

[115] Lee BR, Lee KH, Kang E, Kim DS, Lee SH. Microfluidic wet spinning of chitosan–alginate microfibers and encapsulation of HepG2 cells in fibers. Biomicrofluidics 2011;5(2):22208. link1

[116] Yamada M, Sugaya S, Naganuma Y, Seki M. Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking. Soft Matter 2012;8(11):3122–30. link1

[117] Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater 2013;12(6):584–90. link1

[118] Jun Y, Kim MJ, Hwang YH, Jeon EA, Kang AR, Lee SH, et al. Microfluidicsgenerated pancreatic islet microfibers for enhanced immunoprotection. Biomaterials 2013;34(33):8122–30. link1

[119] Hu M, Deng R, Schumacher KM, Kurisawa M, Ye H, Purnamawati K, et al. Hydrodynamic spinning of hydrogel fibers. Biomaterials 2010;31(5):863–9. link1

[120] Meng ZJ, Liu J, Yu Z, Zhou H, Deng X, Abell C, et al. Viscoelastic hydrogel microfibers exploiting cucurbit[8]uril host–guest chemistry and microfluidics. ACS Appl Mater Interfaces 2020;12(15):17929–35. link1

[121] Liu Y, Zhang K, Ma J, Vancso GJ. Thermoresponsive semi-IPN hydrogel microfibers from continuous fluidic processing with high elasticity and fast actuation. ACS Appl Mater Interfaces 2017;9(1):901–8. link1

[122] Fujimoto K, Higashi K, Onoe H, Miki N. Microfluidic mass production system for hydrogel microtubes for microbial culture. Jpn J Appl Phys 2017;56 (6S1):06GM02. link1

[123] Daniele MA, Radom K, Ligler FS, Adams AA. Microfluidic fabrication of multiaxial microvessels via hydrodynamic shaping. RSC Adv 2014;4 (45):23440–6. link1

[124] Huynh VL, Trung TQ, Meeseepong M, Lee HB, Nguyen TD, Lee N. Hollow microfibers of elastomeric nanocomposites for fully stretchable and highly sensitive microfluidic immunobiosensor patch. Adv Funct Mater 2020;30 (46):2004684. link1

[125] Jeong W, Kim J, Kim S, Lee S, Mensing G, Beebe DJ. Hydrodynamic microfabrication via ‘‘on the fly” photopolymerization of microscale fibers and tubes. Lab Chip 2004;4(6):576–80. link1

[126] Jung JH, Choi CH, Chung S, Chung YM, Lee CS. Microfluidic synthesis of a cell adhesive Janus polyurethane microfiber. Lab Chip 2009;9(17):2596–602. link1

[127] Kang E, Jeong GS, Choi YY, Lee KH, Khademhosseini A, Lee SH. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat Mater 2011;10(11):877–83. link1

[128] Bell RV, Parkins CC, Young RA, Preuss CM, Stevens MM, Bon SAF. Assembly of emulsion droplets into fibers by microfluidic wet spinning. J Mater Chem A 2016;4(3):813–8. link1

[129] Cheng Y, Zheng F, Lu J, Shang L, Xie Z, Zhao Y, et al. Bioinspired multicompartmental microfibers from microfluidics. Adv Mater 2014;26 (30):5184–90. link1

[130] Cheng Y, Yu Y, Fu F, Wang J, Shang L, Gu Z, et al. Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques. ACS Appl Mater Interfaces 2016;8(2):1080–6. link1

[131] Xie R, Xu P, Liu Y, Li L, Luo G, Ding M, et al. Necklace-like microfibers with variable knots and perfusable channels fabricated by an oil-free microfluidic spinning process. Adv Mater 2018;30(14):1705082. link1

[132] Shang L, Fu F, Cheng Y, Yu Y, Wang J, Gu Z, et al. Bioinspired multifunctional spindle-knotted microfibers from microfluidics. Small 2017;13(4):1600286. link1

[133] Calejo I, Costa-Almeida R, Reis RL, Gomes ME. A textile platform using continuous aligned and textured composite microfibers to engineer tendonto-bone interface gradient scaffolds. Adv Healthc Mater 2019;8(15):1900200. link1

[134] Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA. Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab Chip 2017;17 (11):1856–83. link1

[135] Hasani-Sadrabadi MM, Taranejoo S, Dashtimoghadam E, Bahlakeh G, Majedi FS, VanDersarl JJ, et al. Microfluidic manipulation of core/shell nanoparticles for oral delivery of chemotherapeutics: a new treatment approach for colorectal cancer. Adv Mater 2016;28(21):4134–41. link1

[136] He XW, Wang F, Jiang L, Li J, Liu SK, Xiao ZY, et al. Induction of mucosal and systemic immune response by single-dose oral immunization with biodegradable microparticles containing DNA encoding HBsAg. J Gen Virol 2005;86(3):601–10. link1

[137] Hussain M, Xie J, Hou Z, Shezad K, Xu J, Wang K, et al. Regulation of drug release by tuning surface textures of biodegradable polymer microparticles. ACS Appl Mater Interfaces 2017;9(16):14391–400. link1

[138] Wang YT, Shang LR, Chen GP, Shao CM, Liu YX, Lu PH, et al. Pollen-inspired microparticles with strong adhesion for drug delivery. Appl Mater Today 2018;13:303–9. link1

[139] Headen DM, Woodward KB, Coronel MM, Shrestha P, Weaver JD, Zhao H, et al. Local immunomodulation Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat Mater 2018;17(8):732–9. link1

[140] Veiseh O, Doloff JC, Ma M, Vegas AJ, Tam HH, Bader AR, et al. Size- and shapedependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 2015;14(6):643–51. link1

[141] Marimuthu M, Kim S, An J. Amphiphilic triblock copolymer and a microfluidic device for porous microfiber fabrication. Soft Matter 2010;6(10):2200–7. link1

[142] Sun T, Li X, Shi Q, Wang H, Huang Q, Fukuda T. Microfluidic spun alginate hydrogel microfibers and their application in tissue engineering. Gels 2018;4 (2):38. link1

[143] Daniele MA, Boyd DA, Adams AA, Ligler FS. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications. Adv Healthc Mater 2015;4(1):11–28. link1

[144] Kang E, Choi YY, Chae SK, Moon JH, Chang JY, Lee SH. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Adv Mater 2012;24(31):4271–7. link1

[145] Yang Y, Sun J, Liu X, Guo Z, He Y, Wei D, et al. Wet-spinning fabrication of shear-patterned alginate hydrogel microfibers and the guidance of cell alignment. Regen Biomater 2017;4(5):299–307. link1

[146] Nguyen TPT, Le NXT, Lee NY. Microfluidic approach to generate a tadpoleegg-shaped alginate fiber and its application in tissue engineering. ACS Biomater Sci Eng 2020;6(3):1663–70. link1

[147] Zhao Y, Cheng Y, Shang L, Wang J, Xie Z, Gu Z. Microfluidic synthesis of barcode particles for multiplex assays. Small 2015;11(2):151–74. link1

[148] Wang H, Liu Y, Chen Z, Sun L, Zhao Y. Anisotropic structural color particles from colloidal phase separation. Sci Adv 2020;6(2):aay1438. link1

[149] Kim SH, Shim JW, Yang SM. Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew Chem Int Ed Engl 2011;50(5):1171–4. link1

[150] Shang L, Fu F, Cheng Y, Wang H, Liu Y, Zhao Y, et al. Photonic crystal microbubbles as suspension barcodes. J Am Chem Soc 2015;137(49):15533–9. link1

[151] Bian F, Wu J, Wang H, Sun L, Shao C, Wang Y, et al. Bioinspired photonic barcodes with graphene oxide encapsulation for multiplexed microRNA quantification. Small 2018;14(52):1803551. link1

Related Research