Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 8 doi: 10.1016/j.eng.2021.07.001

An Overview of Metal–Organic Frameworks for Green Chemical Engineering

Beijing Key Laboratory for Green Catalysis and Separation & Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China

Received: 2019-11-08 Revised: 2020-06-20 Accepted: 2020-08-06 Available online: 2021-07-08

Next Previous


Given the current global energy and environmental issues resulting from the fast pace of industrialization, the discovery of new functional materials has become increasingly imperative in order to advance science and technology and address the associated challenges. The boom in metal–organic frameworks (MOFs) and MOF-derived materials in recent years has stimulated profound interest in exploring their structures and applications. The preparation, characterization, and processing of MOF materials are the basis of their full engagement in industrial implementation. With intensive research in these topics, it is time to promote the practical utilization of MOFs on an industrial scale, such as for green chemical engineering, by taking advantage of their superior functions. Many famous MOFs have already demonstrated superiority over traditional materials in solving real-world problems. This review starts with the basic concept of MOF chemistry and ends with a discussion of the industrial production and exploitation of MOFs in several fields. Its goal is to provide a general scope of application to inspire MOF researchers to convert their focus on academic research to one on practical applications. After the obstacles of cost, scale-up preparation, processability, and stability have been overcome, MOFs and MOF-based devices will gradually enter the factory, become a part of our daily lives, and help to create a future based on green production and green living.


Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8


[ 1 ] Boodhoo K, Harvey A. Process intensification for green chemistry: engineering solutions for sustainable chemical processing. Hoboken: John Wiley & Sons, Ltd.; 2013. link1

[ 2 ] Ajoyan Z, Marino P, Howarth AJ. Green applications of metal–organic frameworks. Cryst Eng Comm 2018;20(39):5899–912. link1

[ 3 ] Kaskel S, editor. The chemistry of metal–organic frameworks. Weinheim: Wiley-VCH; 2016. link1

[ 4 ] Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal–organic frameworks. Science 2013;341(6149): 1230444. link1

[ 5 ] Howarth AJ, Peters AW, Vermeulen NA, Wang TC, Hupp JT, Farha OK. Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem Mater 2017;29(1):26–39. link1

[ 6 ] Cui Y, Li B, He H, Zhou W, Chen B, Qian G. Metal–organic frameworks as platforms for functional materials. Acc Chem Res 2016;49(3):483–93. link1

[ 7 ] Lu W, Wei Z, Gu ZY, Liu TF, Park J, Park J, et al. Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 2014;43(16):5561–93. link1

[ 8 ] Stock N, Biswas S. Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 2012;112 (2):933–69. link1

[ 9 ] Foo ML, Matsuda R, Kitagawa S. Functional hybrid porous coordination polymers. Chem Mater 2014;26(1):310–22. link1

[10] Li M, Li D, O’Keeffe M, Yaghi OM. Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem Rev 2014;114(2):1343–70. link1

[11] Lin ZJ, Lü J, Hong M, Cao R. Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem Soc Rev 2014;43 (16):5867–95. link1

[12] Slater AG, Cooper AI. Function-led design of new porous materials. Science 2015;348(6238):aaa8075. link1

[13] Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 2016;45(8):2327–67. link1

[14] Yang Q, Xu Q, Jiang HL. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 2017;46 (15):4774–808. link1

[15] Li S, Huo F. Metal–organic framework composites: from fundamentals to applications. Nanoscale 2015;7(17):7482–501. link1

[16] Wang C, An B, Lin W. Metal–organic frameworks in solid–gas phase catalysis. ACS Catal 2019;9(1):130–46. link1

[17] Jiang J, Zhao Y, Yaghi OM. Covalent chemistry beyond molecules. J Am Chem Soc 2016;138(10):3255–65. link1

[18] Julien PA, Mottillo C, Frišcˇic´ T. Metal–organic frameworks meet scalable and sustainable synthesis. Green Chem 2017;19(12):2729–47. link1

[19] Shearer GC, Chavan S, Bordiga S, Svelle S, Olsbye U, Lillerud KP. Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem Mater 2016;28 (11):3749–61. link1

[20] Chung YG, Camp J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, et al. Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem Mater 2014;26(21):6185–92. link1

[21] Wilmer CE, Leaf M, Lee CY, Farha OK, Hauser BG, Hupp JT, et al. Large-scale screening of hypothetical metal–organic frameworks. Nat Chem 2012;4 (2):83–9. link1

[22] Wu X, Bao Z, Yuan B, Wang J, Sun Y, Luo H, et al. Microwave synthesis and characterization of MOF-74 (M = Ni, Mg) for gas separation. Microporous Mesoporous Mater 2013;180:114–22. link1

[23] Vaitsis C, Sourkouni G, Argirusis C. Metal organic frameworks (MOFs) and ultrasound: a review. Ultrason Sonochem 2019;52:106–19. link1

[24] Frišcˇic´ T. New opportunities for materials synthesis using mechanochemistry. J Mater Chem 2010;20(36):7599–605. link1

[25] Al-Kutubi H, Gascon J, Sudhölter EJR, Rassaei L. Electrosynthesis of metal– organic frameworks: challenges and opportunities. Chem Electro Chem 2015;2(4):462–74. link1

[26] Islamoglu T, Goswami S, Li Z, Howarth AJ, Farha OK, Hupp JT. Postsynthetic tuning of metal–organic frameworks for targeted applications. Acc Chem Res 2017;50(4):805–13. link1

[27] Brozek CK, Dinca˘ M. Cation exchange at the secondary building units of metal–organic frameworks. Chem Soc Rev 2014;43(16):5456–67. link1

[28] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005;309(5743):2040–2. link1

[29] Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 2006;103(27):10186–91. link1

[30] Nelson AP, Farha OK, Mulfort KL, Hupp JT. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal–organic framework materials. J Am Chem Soc 2009;131(2):458–60. link1

[31] Frišcˇic´ T, Julien PA, Mottillo C. Green technologies for the environment. ACS Symp Ser 2014;1186:161–83. link1

[32] Chen J, Shen K, Li Y. Greening the processes of metal–organic framework synthesis and their use in sustainable catalysis. Chem Sus Chem 2017;10 (16):3165–87. link1

[33] Sánchez-Sánchez M, Getachew N, Díaz K, Díaz-García M, Chebude Y, Díaz I. Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chem 2015;17(3):1500–9. link1

[34] Díaz-García M, Mayoral Á, Díaz I, Sánchez-Sánchez M. Nanoscaled M-MOF-74 materials prepared at room temperature. Cryst Growth Des 2014;14 (5):2479–87. link1

[35] Cliffe MJ, Mottillo C, Stein RS, Bucˇar DK, Frišcˇic´ T. Accelerated aging: a low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal–organic materials. Chem Sci 2012;3(8):2495–500. link1

[36] Huo J, Brightwell M, El Hankari S, Garai A, Bradshaw D. A versatile, industrially relevant, aqueous room temperature synthesis of HKUST-1 with high space-time yield. J Mater Chem A 2013;1(48):15220–3. link1

[37] Bayliss PA, Ibarra IA, Pérez E, Yang S, Tang CC, Poliakoff M, et al. Synthesis of metal–organic frameworks by continuous flow. Green Chem 2014;16 (8):3796–802. link1

[38] Hu Z, Peng Y, Kang Z, Qian Y, Zhao D. A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-type MOFs. Inorg Chem 2015;54 (10):4862–8. link1

[39] Zhang J, White GB, Ryan MD, Hunt AJ, Katz MJ. Dihydrolevoglucosenone (Cyrene) as a green alternative to N,N-dimethylformamide (DMF) in MOF synthesis. ACS Sustain Chem Eng 2016;4(12):7186–92. link1

[40] Kim SH, Yang ST, Kim J, Ahn WS. Sonochemical synthesis of Cu3(BTC)2 in a deep eutectic mixture of choline chloride/dimethylurea. Bull Korean Chem Soc 2011;32(8):2783–6. link1

[41] Parnham ER, Morris RE. Ionothermal synthesis of zeolites, metal–organic frameworks, and inorganic–organic hybrids. Acc Chem Res 2007;40 (10):1005–13. link1

[42] Dreischarf AC, Lammert M, Stock N, Reinsch H. Green synthesis of Zr-CAU-28: structure and properties of the first Zr-MOF based on 2,5-furandicarboxylic acid. Inorg Chem 2017;56(4):2270–7. link1

[43] Czaja AU, Trukhan N, Müller U. Industrial applications of metal–organic frameworks. Chem Soc Rev 2009;38(5):1284–93. link1

[44] Ren J, Dyosiba X, Musyoka NM, Langmi HW, Mathe M, Liao S. Review on the current practices and efforts towards pilot-scale production of metal–organic frameworks (MOFs). Coord Chem Rev 2017;352:187–219. link1

[45] Rubio-Martinez M, Avci-Camur C, Thornton AW, Imaz I, Maspoch D, Hill MR. New synthetic routes towards MOF production at scale. Chem Soc Rev 2017;46(11):3453–80. link1

[46] Silva P, Vilela SMF, Tomé JPC, Almeida Paz FA. Multifunctional metal–organic frameworks: from academia to industrial applications. Chem Soc Rev 2015;44(19):6774–803. link1

[47] Howarth AJ, Liu Y, Li P, Li Z, Wang TC, Hupp JT, et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater 2016;1 (3):15018. link1

[48] Burtch NC, Heinen J, Bennett TD, Dubbeldam D, Allendorf MD. Mechanical properties in metal–organic frameworks: emerging opportunities and challenges for device functionality and technological applications. Adv Mater 2018;30(37):e1704124. link1

[49] Serre C, Mellot-Draznieks C, Surble S, Audebrand N, Filinchuk Y, Ferey G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 2007;315(5820):1828–31. link1

[50] Devic T, Serre C. High valence 3p and transition metal based MOFs. Chem Soc Rev 2014;43(16):6097–115. link1

[51] James SL, Adams CJ, Bolm C, Braga D, Collier P, Frišcˇic´ T, et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 2012;41(1):413–47. link1

[52] Burtch NC, Jasuja H, Walton KS. Water stability and adsorption in metal– organic frameworks. Chem Rev 2014;114(20):10575–612. link1

[53] Wang C, Liu X, Keser Demir N, Chen JP, Li K. Applications of water stable metal–organic frameworks. Chem Soc Rev 2016;45(18):5107–34. link1

[54] Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, et al. Stable metal–organic frameworks: design, synthesis, and applications. Adv Mater 2018;30(37): e1704303. link1

[55] Speight JG. Lange’s handbook of chemistry. New York: McGraw-Hill; 2005. link1

[56] Lv XL, Wang K, Wang B, Su J, Zou X, Xie Y, et al. A base-resistant metalloporphyrin metal–organic framework for C–H bond halogenation. J Am Chem Soc 2017;139(1):211–7. link1

[57] Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, et al. Metal– organic frameworks in biomedicine. Chem Rev 2012;112(2):1232–68. link1

[58] Valizadeh B, Nguyen TN, Stylianou KC. Shape engineering of metal–organic frameworks. Polyhedron 2018;145:1–15. link1

[59] Ren J, Musyoka NM, Langmi HW, Swartbooi A, North BC, Mathe M. A more efficient way to shape metal–organic framework (MOF) powder materials for hydrogen storage applications. Int J Hydrogen Energy 2015;40(13):4617–22. link1

[60] Moreira MA, Santos JC, Ferreira AFP, Loureiro JM, Ragon F, Horcajada P, et al. Reverse shape selectivity in the liquid-phase adsorption of xylene isomers in zirconium terephthalate MOF UiO-66. Langmuir 2012;28(13):5715–23. link1

[61] Wu YN, Li F, Liu H, Zhu W, Teng M, Jiang Y, et al. Electrospun fibrous mats as skeletons to produce free-standing MOF membranes. J Mater Chem 2012;22 (33):16971–8. link1

[62] Chen Y, Huang X, Zhang S, Li S, Cao S, Pei X, et al. Shaping of metal–organic frameworks: from fluid to shaped bodies and robust foams. J Am Chem Soc 2016;138(34):10810–3. link1

[63] Bueken B, Van Velthoven N, Willhammar T, Stassin T, Stassen I, Keen DA, et al. Gel-based morphological design of zirconium metal–organic frameworks. Chem Sci 2017;8(5):3939–48. link1

[64] Garai B, Mallick A, Banerjee R. Photochromic metal–organic frameworks for inkless and erasable printing. Chem Sci 2016;7(3):2195–200. link1

[65] Küsgens P, Zgaverdea A, Fritz HG, Siegle S, Kaskel S. Metal–organic frameworks in monolithic structures. J Am Ceram Soc 2010;93(9):2476–9. link1

[66] Carné-Sánchez A, Imaz I, Cano-Sarabia M, Maspoch D. A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat Chem 2013;5(3):203–11. link1

[67] Crawford D, Casaban J, Haydon R, Giri N, McNally T, James SL. Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem Sci 2015;6(3):1645–9. link1

[68] Kim PJ, You YW, Park H, Chang JS, Bae YS, Lee CH, et al. Separation of SF6 from SF6/N2 mixture using metal–organic framework MIL-100(Fe) granule. Chem Eng J 2015;262:683–90. link1

[69] Andrew Lin KY, Chang HA. A zeolitic imidazole framework (ZIF)-sponge composite prepared via a surfactant-assisted dip-coating method. J Mater Chem A 2015;3(40):20060–4. link1

[70] Garai A, Shepherd W, Huo J, Bradshaw D. Biomineral-inspired growth of metal–organic frameworks in gelatin hydrogel matrices. J Mater Chem B 2013;1(30):3678–84. link1

[71] Allendorf MD, Hulvey Z, Gennett T, Ahmed A, Autrey T, Camp J, et al. An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy Environ Sci 2018;11(10):2784–812. link1

[72] He Y, Chen F, Li B, Qian G, Zhou W, Chen B. Porous metal–organic frameworks for fuel storage. Coord Chem Rev 2018;373:167–98. link1

[73] Wang B, Xie LH, Wang X, Liu XM, Li J, Li JR. Applications of metal–organic frameworks for green energy and environment: new advances in adsorptive gas separation, storage and removal. Green Energy Environ 2018;3 (3):191–228. link1

[74] Kapelewski MT, Runcˇevski T, Tarver JD, Jiang HZH, Hurst KE, Parilla PA, et al. Record high hydrogen storage capacity in the metal–organic framework Ni2(m–dobdc) at near-ambient temperatures. Chem Mater 2018;30 (22):8179–89. link1

[75] Schoedel A, Ji Z, Yaghi OM. The role of metal–organic frameworks in a carbonneutral energy cycle. Nat Energy 2016;1(4):16034. link1

[76] Yan Y, Kolokolov DI, da Silva I, Stepanov AG, Blake AJ, Dailly A, et al. Porous metal–organic polyhedral frameworks with optimal molecular dynamics and pore geometry for methane storage. J Am Chem Soc 2017;139(38):13349–60. link1

[77] Matsuda R, Kitaura R, Kitagawa S, Kubota Y, Belosludov RV, Kobayashi TC, et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 2005;436(7048):238–41. link1

[78] Bobbitt NS, Mendonca ML, Howarth AJ, Islamoglu T, Hupp JT, Farha OK, et al. Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem Soc Rev 2017;46(11):3357–85. link1

[79] Woellner M, Hausdorf S, Klein N, Mueller P, Smith MW, Kaskel S. Adsorption and detection of hazardous trace gases by metal–organic frameworks. Adv Mater 2018;30(37):e1704679. link1

[80] Gao Q, Xu J, Bu XH. Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coord Chem Rev 2019;378:17–31. link1

[81] Ahmed I, Jhung SH. Adsorptive desulfurization and denitrogenation using metal–organic frameworks. J Hazard Mater 2016;301:259–76. link1

[82] Bhatt PM, Belmabkhout Y, Assen AH, Weselin´ ski ŁJ, Jiang H, Cadiau A, et al. Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases. Chem Eng J 2017;324:392–6. link1

[83] Tan K, Zuluaga S, Wang H, Canepa P, Soliman K, Cure J, et al. Interaction of acid gases SO2 and NO2 with coordinatively unsaturated metal organic frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co). Chem Mater 2017;29 (10):4227–35. link1

[84] Yang J, Du B, Liu J, Krishna R, Zhang F, Zhou W, et al. MIL-100Cr with open Cr sites for a record N2O capture. Chem Commun 2018;54(100):14061–4. link1

[85] Xie LH, Liu XM, He T, Li JR. Metal–organic frameworks for the capture of trace aromatic volatile organic compounds. Chem 2018;4(8):1911–27. link1

[86] Zhang Y, Yuan S, Feng X, Li H, Zhou J, Wang Bo. Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J Am Chem Soc 2016;138(18):5785–8. link1

[87] Wang CC, Li JR, Lv XL, Zhang YQ, Guo G. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ Sci 2014;7 (9):2831–67. link1

[88] Li ZQ, Yang JC, Sui KW, Yin N. Facile synthesis of metal–organic framework MOF-808 for arsenic removal. Mater Lett 2015;160:412–4. link1

[89] Wang Y, Ye G, Chen H, Hu X, Niu Z, Ma S. Functionalized metal–organic framework as a new platform for efficient and selective removal of cadmium (II) from aqueous solution. J Mater Chem A 2015;3(29):15292–8. link1

[90] He J, Yee KK, Xu Z, Zeller M, Hunter AD, Chui SSY, et al. Thioether side chains improve the stability, fluorescence, and metal uptake of a metal–organic framework. Chem Mater 2011;23(11):2940–7. link1

[91] Liang L, Chen Q, Jiang F, Yuan D, Qian J, Lv G, et al. In situ large-scale construction of sulfur-functionalized metal–organic framework and its efficient removal of Hg(II) from water. J Mater Chem A 2016;4(40):15370–4. link1

[92] Luo MB, Xiong YY, Wu HQ, Feng XF, Li JQ, Luo F. The MOF+ technique: a significant synergic effect enables high performance chromate removal. 2017;56(51):16376–9.

[93] Karmakar S, Dechnik J, Janiak C, De S. Aluminium fumarate metal–organic framework: a super adsorbent for fluoride from water. J Hazard Mater 2016;303:10–20. link1

[94] Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, et al. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat Commun 2017;8(1):15369. link1

[95] Haque E, Jun JW, Jhung SH. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal–organic framework material, iron terephthalate (MOF-235). J Hazard Mater 2011;185(1):507–11. link1

[96] Wang B, Lv XL, Feng D, Xie LH, Zhang J, Li M, et al. Highly stable Zr(IV)-based metal–organic frameworks for the detection and removal of antibiotics and organic explosives in water. J Am Chem Soc 2016;138(19):6204–16. link1

[97] Van de Voorde B, Damasceno Borges D, Vermoortele F, Wouters R, Bozbiyik B, Denayer J, et al. Isolation of renewable phenolics by adsorption on ultrastable hydrophobic MIL-140 metal–organic frameworks. Chem Sus Chem 2015;8 (18):3159–66. link1

[98] Yoon J, Seo YK, Hwang Y, Chang JS, Leclerc H, Wuttke S, et al. Controlled reducibility of a metal–organic framework with coordinatively unsaturated sites for preferential gas sorption. Angew Chem Int Ed Engl 2010;49 (34):5949–52. link1

[99] Ahmed I, Hasan Z, Khan NA, Jhung SH. Adsorptive denitrogenation of model fuels with porous metal–organic frameworks (MOFs): effect of acidity and basicity of MOFs. Appl Catal B 2013;129:123–9. link1

[100] Van de Voorde B, Boulhout M, Vermoortele F, Horcajada P, Cunha D, Lee JS, et al. N/S-heterocyclic contaminant removal from fuels by the mesoporous metal–organic framework MIL-100: the role of the metal ion. J Am Chem Soc 2013;135(26):9849–56. link1

[101] Kalmutzki MJ, Diercks CS, Yaghi OM. Metal–organic frameworks for water harvesting from air. Adv Mater 2018;30(37):1704304. link1

[102] Kim H, Yang S, Rao SR, Narayanan S, Kapustin EA, Furukawa H, et al. Water harvesting from air with metal–organic frameworks powered by natural sunlight. Science 2017;356(6336):430–4. link1

[103] Fathieh F, Kalmutzki MJ, Kapustin EA, Waller PJ, Yang J, Yaghi OM. Practical water production from desert air. Sci Adv 2018;4(6):eaat3198.

[104] Wang S, Lee JS, Wahiduzzaman M, Park J, Muschi M, Martineau-Corcos C, et al. A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nat Energy 2018;3 (11):985–93. link1

[105] Seo YK, Yoon JW, Lee JS, Hwang YK, Jun CH, Chang JS, et al. Energy-efficient dehumidification over hierachically porous metal–organic frameworks as advanced water adsorbents. Adv Mater 2012;24(6):806–10. link1

[106] Towsif Abtab SM, Alezi D, Bhatt PM, Shkurenko A, Belmabkhout Y, Aggarwal H, et al. Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem 2018;4(1):94–105. link1

[107] Li JR, Sculley J, Zhou HC. Metal–organic frameworks for separations. Chem Rev 2012;112(2):869–932. link1

[108] Zhao X, Wang Y, Li DS, Bu X, Feng P. Metal–organic frameworks for separation. Adv Mater 2018;30(37):1705189. link1

[109] Trickett CA, Helal A, Al-Maythalony BA, Yamani ZH, Cordova KE, Yaghi OM. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat Rev Mater 2017;2(8):17045. link1

[110] Yu J, Xie LH, Li JR, Ma Y, Seminario JM, Balbuena PB. CO2 capture and separations using MOFs: computational and experimental studies. Chem Rev 2017;117(14):9674–754. link1

[111] Reed DA, Keitz BK, Oktawiec J, Mason JA, Runcˇevski T, Xiao DJ, et al. A spin transition mechanism for cooperative adsorption in metal–organic frameworks. Nature 2017;550(7674):96–100. link1

[112] Bloch ED, Murray LJ, Queen WL, Chavan S, Maximoff SN, Bigi JP, et al. Selective binding of O2 over N2 in a redox-active metal–organic framework with open iron(II) coordination sites. J Am Chem Soc 2011;133(37):14814–22. link1

[113] Bao Z, Wang J, Zhang Z, Xing H, Yang Q, Yang Y, et al. Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal–organic frameworks. Angew Chem Int Ed Engl 2018;57(49):16020–5. link1

[114] Li L, Lin RB, Krishna R, Li H, Xiang S, Wu H, et al. Ethane/ethylene separation in a metal–organic framework with iron–peroxo sites. Science 2018;362 (6413):443–6. link1

[115] Qazvini OT, Babarao R, Shi ZL, Zhang YB, Telfer SG. A robust ethane-trapping metal–organic framework with a high capacity for ethylene purification. J Am Chem Soc 2019;141(12):5014–20. link1

[116] Cadiau A, Adil K, Bhatt PM, Belmabkhout Y, Eddaoudi M. A metal–organic framework-based splitter for separating propylene from propane. Science 2016;353(6295):137–40. link1

[117] Cui X, Chen K, Xing H, Yang Q, Krishna R, Bao Z, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016;353(6295):141–4. link1

[118] Li L, Wen HM, He C, Lin RB, Krishna R, Wu H, et al. A metal–organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene. Angew Chem Int Ed Engl 2018;57 (46):15183–8. link1

[119] Peng YL, Pham T, Li P, Wang T, Chen Y, Chen KJ, et al. Robust ultramicroporous metal–organic frameworks with benchmark affinity for acetylene. Angew Chem Int Ed Engl 2018;57(34):10971–5. link1

[120] Liao PQ, Huang NY, Zhang WX, Zhang JP, Chen XM. Controlling guest conformation for efficient purification of butadiene. Science 2017;356 (6343):1193–6. link1

[121] Cao D, Huang H, Lan Y, Chen X, Yang Q, Liu D, et al. Ultrahigh effective H2/D2 separation in an ultramicroporous metal–organic framework material through quantum sieving. J Mater Chem A 2018;6(41):19954–9. link1

[122] Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastré J. Metal– organic frameworks—prospective industrial applications. J Mater Chem 2006;16(7):626–36. link1

[123] Van de Voorde B, Bueken B, Denayer J, De Vos D. Adsorptive separation on metal–organic frameworks in the liquid phase. Chem Soc Rev 2014;43 (16):5766–88. link1

[124] Mukherjee S, Desai AV, Ghosh SK. Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coord Chem Rev 2018;367:82–126. link1

[125] Herm ZR, Wiers BM, Mason JA, van Baten JM, Hudson MR, Zajdel P, et al. Separation of hexane isomers in a metal–organic framework with triangular channels. Science 2013;340(6135):960–4. link1

[126] Mukherjee S, Manna B, Desai AV, Yin Y, Krishna R, Babarao R, et al. Harnessing Lewis acidic open metal sites of metal–organic frameworks: the foremost route to achieve highly selective benzene sorption over cyclohexane. Chem Commun (Camb) 2016;52(53):8215–8. link1

[127] Manna B, Mukherjee S, Desai AV, Sharma S, Krishna R, Ghosh SK. A p-electron deficient diaminotriazine functionalized MOF for selective sorption of benzene over cyclohexane. Chem Commun (Camb) 2015;51(84):15386–9. link1

[128] Maes M, Vermoortele F, Alaerts L, Couck S, Kirschhock CEA, Denayer JFM, et al. Separation of styrene and ethylbenzene on metal–organic frameworks: analogous structures with different adsorption mechanisms. J Am Chem Soc 2010;132(43):15277–85. link1

[129] Remy T, Ma L, Maes M, De Vos DE, Baron GV, Denayer JFM. Vapor-phase adsorption and separation of ethylbenzene and styrene on the metalorganic frameworks MIL-47 and MIL-53(Al). Ind Eng Chem Res 2012;51 (45):14824–33. link1

[130] Krishna R. Screening metal–organic frameworks for mixture separations in ficre-bed adsorbers using a combined selectivity/capacity metric. RSC Adv 2017;7(57):35724–37. link1

[131] Zhang K, Nalaparaju A, Chen Y, Jiang J. Biofuel purification in zeolitic imidazolate frameworks: the significant role of functional groups. Phys Chem Chem Phys 2014;16(20):9643–55. link1

[132] Mukherjee S, Kansara AM, Saha D, Gonnade R, Mullangi D, Manna B, et al. An ultrahydrophobic fluorous metal–organic framework derived recyclable composite as a promising platform to tackle marine oil spills. Chemistry 2016;22(31):10937–43. link1

[133] Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong HK. Current status of metal– organic framework membranes for gas separations: promises and challenges. Ind Eng Chem Res 2012;51(5):2179–99. link1

[134] Li X, Liu Y, Wang J, Gascon J, Li J, Van der Bruggen B. Metal–organic frameworks based membranes for liquid separation. Chem Soc Rev 2017;46 (23):7124–44. link1

[135] Liang B, He X, Hou J, Li L, Tang Z. Membrane separation in organic liquid: technologies, achievements, and opportunities. Adv Mater 2019;31 (45):1806090. link1

[136] Venna SR, Carreon MA. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 2010;132(1):76–8. link1

[137] Pan Y, Lai Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem Commun (Camb) 2011;47(37):10275–7. link1

[138] Demessence A, Boissière C, Grosso D, Horcajada P, Serre C, Férey G, et al. Adsorption properties in high optical quality nanoZIF-8 thin films with tunable thickness. J Mater Chem 2010;20(36):7676–81. link1

[139] Liu X, Wang C, Wang Bo, Li K. Novel organic-dehydration membranes prepared from zirconium metal–organic frameworks. Adv Funct Mater 2017;27(3):1604311. link1

[140] Liu X, Demir NK, Wu Z, Li K. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J Am Chem Soc 2015;137(22):6999–7002. link1

[141] Kang Z, Xue M, Fan L, Ding J, Guo L, Gao L, et al. ‘‘Single nickel source” in situ fabrication of a stable homochiral MOF membrane with chiral resolution properties. Chem Commun (Camb) 2013;49(90):10569–71. link1

[142] Lewis NS. Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nat Nanotechnol 2016;11(12):1010–9. link1

[143] Zhou J, Wang Bo. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem Soc Rev 2017;46 (22):6927–45. link1

[144] Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 2012;41(2):797–828. link1

[145] Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater 2012;11(1):19–29. link1

[146] Li SL, Xu Q. Metal–organic frameworks as platforms for clean energy. Energy Environ Sci 2013;6(6):1656–83. link1

[147] Liang Z, Qu C, Guo W, Zou R, Xu Q. Pristine metal–organic frameworks and their composites for energy storage and conversion. Adv Mater 2018;30(37): e1702891. link1

[148] Wang H, Zhu QL, Zou R, Xu Q. Metal–organic frameworks for energy applications. Chem 2017;2(1):52–80. link1

[149] Zhang T, Lin W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 2014;43(16):5982–93. link1

[150] Fang Y, Ma Y, Zheng M, Yang P, Asiri AM, Wang X. Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coord Chem Rev 2018;373:83–115. link1

[151] Alvaro M, Carbonell E, Ferrer B, Llabrés i Xamena F, Garcia H. Semiconductor behavior of a metal–organic framework (MOF). Chemistry 2007;13 (18):5106–12. link1

[152] Llabrés I, Xamena FX, Corma A, Garcia H. Applications for metal–organic frameworks (MOFs) as quantum dot semiconductors. J Phys Chem C 2007;111(1):80–5. link1

[153] Zhang Y, Liu J, Wu G, Chen W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 2012;4(17):5300–3. link1

[154] Fateeva A, Chater PA, Ireland CP, Tahir AA, Khimyak YZ, Wiper PV, et al. A water-stable porphyrin-based metal–organic framework active for visiblelight photocatalysis. Angew Chem Int Ed Engl 2012;51(30):7440–4. link1

[155] Wang C, Xie Z, deKrafft KE, Lin W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 2011;133(34):13445–54. link1

[156] Nepal B, Das S. Sustained water oxidation by a catalyst cage-isolated in a metal–organic framework. Angew Chem Int Ed Engl 2013;52(28):7224–7. link1

[157] Zhang H, Wei J, Dong J, Liu G, Shi L, An P, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angew Chem Int Ed Engl 2016;55(46):14310–4. link1

[158] Chen EX, Qiu M, Zhang YF, Zhu YS, Liu LY, Sun YY, et al. Acid and base resistant zirconium polyphenolate-metalloporphyrin scaffolds for efficient CO2 photoreduction. Adv Mater 2018;30(2):1704388. link1

[159] Keum Y, Park S, Chen YP, Park J. Titanium-carboxylate metal–organic framework based on an unprecedented Ti-oxo chain cluster. Angew Chem Int Ed Engl 2018;57(45):14852–6. link1

[160] Liu J, Zhou W, Liu J, Howard I, Kilibarda G, Schlabach S, et al. Photoinduced charge-carrier generation in epitaxial MOF thin films: high efficiency as a result of an indirect electronic band gap? Angew Chem Int Ed Engl 2015;54 (25):7441–5. link1

[161] Aiyappa HB, Masa J, Andronescu C, Muhler M, Fischer RA, Schuhmann W. MOFs for electrocatalysis: from serendipity to design strategies. Small 2019;3 (8):1800415. link1

[162] Clough AJ, Yoo JW, Mecklenburg MH, Marinescu SC. Two-dimensional metal– organic surfaces for efficient hydrogen evolution from water. J Am Chem Soc 2015;137(1):118–21. link1

[163] Lu XF, Liao PQ, Wang JW, Wu JX, Chen XW, He CT, et al. An alkaline-stable, metal hydroxide mimicking metal–organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc 2016;138(27):8336–9. link1

[164] Manna P, Debgupta J, Bose S, Das SK. A mononuclear Co(II) coordination complex locked in a confined space and acting as an electrochemical wateroxidation catalyst: a ‘‘ship-in-a-bottle” approach. Angew Chem Int Ed Engl 2016;55(7):2425–30. link1

[165] Hinogami R, Yotsuhashi S, Deguchi M, Zenitani Y, Hashiba H, Yamada Y. Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework. ECS Electrochem Lett 2012;1(4):H17–9. link1

[166] Hod I, Sampson MD, Deria P, Kubiak CP, Farha OK, Hupp JT. Fe-porphyrinbased metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal 2015;5(11):6302–9. link1

[167] Kornienko N, Zhao Y, Kley CS, Zhu C, Kim D, Lin S, et al. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc 2015;137(44):14129–35. link1

[168] Yang F, Xu G, Dou Y, Wang B, Zhang H, Wu H, et al. A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nat Energy 2017;2(11):877–83. link1

[169] Yang L, Kinoshita S, Yamada T, Kanda S, Kitagawa H, Tokunaga M, et al. A metal–organic framework as an electrocatalyst for ethanol oxidation. Angew Chem Int Ed Engl 2010;49(31):5348–51. link1

[170] Qu C, Jiao Y, Zhao B, Chen D, Zou R, Walton KS, et al. Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 2016;26:66–73. link1

[171] Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dinca˘ M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 2017;16(2):220–4. link1

[172] Tang H, Zheng M, Hu Q, Chi Y, Xu B, Zhang S, et al. Derivatives of coordination compounds for rechargeable batteries. J Mater Chem A 2018;6 (29):13999–4024. link1

[173] Zhang XQ, Zhao CZ, Huang JQ, Zhang Q. Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering 2018;4 (6):831–47. link1

[174] Ogihara N, Yasuda T, Kishida Y, Ohsuna T, Miyamoto K, Ohba N. Organic dicarboxylate negative electrode materials with remarkably small strain for high-voltage bipolar batteries. Angew Chem Int Ed Engl 2014;53 (43):11467–72. link1

[175] Zheng J, Tian J, Wu D, Gu M, Xu Wu, Wang C, et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett 2014;14(5):2345–52. link1

[176] Wu D, Guo Z, Yin X, Pang Q, Tu B, Zhang L, et al. Metal–organic frameworks as cathode materials for Li–O2 batteries. Adv Mater 2014;26(20):3258–62. link1

[177] Jiao L, Wang Y, Jiang HL, Xu Q. Metal–organic frameworks as platforms for catalytic applications. Adv Mater 2018;30(37):e1703663. link1

[178] Llabrés I, Xamena FX, Gascon J, editors. Metal organic frameworks as heterogeneous catalysts. Cambridge: RSC Publishing; 2013. link1

[179] Maina JW, Pozo-Gonzalo C, Kong L, Schütz J, Hill M, Dumée LF. Metal organic framework based catalysts for CO2 conversion. Mater Horiz 2017;4 (3):345–61. link1

[180] Liang J, Huang YB, Cao R. Metal–organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates. Coord Chem Rev 2019;378:32–65. link1

[181] Babu R, Kathalikkattil AC, Roshan R, Tharun J, Kim DW, Park DW. Dual-porous metal organic framework for room temperature CO2 fixation via cyclic carbonate synthesis. Green Chem 2016;18(1):232–42. link1

[182] Dhakshinamoorthy A, Alvaro M, Garcia H. Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catal Sci Technol 2011;1 (6):856–67. link1

[183] Dhakshinamoorthy A, Alvaro M, Garcia H. Atmospheric-pressure, liquidphase, selective aerobic oxidation of alkanes catalysed by metal–organic frameworks. Chemistry 2011;17(22):6256–62. link1

[184] Farha OK, Shultz AM, Sarjeant AA, Nguyen ST, Hupp JT. Active-site-accessible, porphyrinic metal–organic framework materials. J Am Chem Soc 2011;133 (15):5652–5. link1

[185] Stubbs AW, Braglia L, Borfecchia E, Meyer RJ, Román-Leshkov Y, Lamberti C, et al. Selective catalytic olefin epoxidation with MnII-exchanged MOF–5. ACS Catal 2018;8(1):596–601. link1

[186] Llabrés I, Xamena FX, Abad A, Corma A, Garcia H. MOFs as catalysts: activity, reusability and shape-selectivity of a Pd-containing MOF. J Catal 2007;250 (2):294–8. link1

[187] Guo P, Froese C, Fu Q, Chen YT, Peng B, Kleist W, et al. CuPd mixed-metal HKUST–1 as a catalyst for aerobic alcohol oxidation. J Phys Chem C 2018;122 (37):21433–40. link1

[188] Perles J, Iglesias M, Ruiz-Valero C, Snejko N. Rare-earths as catalytic centres in organo–inorganic polymeric frameworks. J Mater Chem 2004;14 (17):2683–9. link1

[189] Gomez-Lor B, Gutiérrez-Puebla E, Iglesias M, Monge MA, Ruiz-Valero C, Snejko N. In2(OH)3(BDC)1.5 (BDC = 1,4-benzendicarboxylate): an In(III) supramolecular 3D framework with catalytic activity. Inorg Chem 2002;41(9):2429–32. link1

[190] Manna K, Zhang T, Carboni M, Abney CW, Lin W. Salicylaldimine-based metal–organic framework enabling highly active olefin hydrogenation with iron and cobalt catalysts. J Am Chem Soc 2014;136(38):13182–5. link1

[191] Horike S, Dincǎ M, Tamaki K, Long JR. Size-selective Lewis acid catalysis in a microporous metal–organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 2008;130(18):5854–5. link1

[192] Tan C, Han X, Li Z, Liu Y, Cui Y. Controlled exchange of achiral linkers with chiral linkers in Zr-based UiO-68 metal–organic framework. J Am Chem Soc 2018;140(47):16229–36. link1

[193] Liu L, Harris TD. Metal–organic frameworks as potential catalysts for industrial 1-butene production. ACS Cent Sci 2016;2(3):125–7. link1

[194] Metzger ED, Brozek CK, Comito RJ, Dinca˘ M. Selective dimerization of ethylene to 1-butene with a porous catalyst. ACS Cent Sci 2016;2(3): 148–53. link1

[195] Huang YB, Liang J, Wang XS, Cao R. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chem Soc Rev 2017;46 (1):126–57. link1

[196] Xu W, Thapa KB, Ju Q, Fang Z, Huang W. Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coord Chem Rev 2018;373: 199–232. link1

[197] Material science products: MOFs [Internet]. Darmstadt: Merck KGaA; c2019 [cited 2019 May 7]. Available from: 103996366. link1

[198] Product catalog: 40-1108 zirconium [Internet]. Newburyport: Strem Chemicals, Inc.; [cited 2019 May 7]. Available from: https://www. link1

[199] MOF-74 [Internet]. Beijing: J&K Scientific, Ltd.; [cited 2019 May 7]. Available form: link1

[200] Frameworks for commercial success. Nat Chem 2016;8(11):987.

Related Research