Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 8 doi: 10.1016/j.eng.2021.07.004

Atomic Force Microscopy Measurement in the Lignosulfonate/Inorganic Silica System: From Dispersion Mechanism Study to Product Design

a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
b State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China

Received: 2019-04-11 Revised: 2019-06-21 Accepted: 2020-06-30 Available online: 2021-07-19

Next Previous


Designing and preparing high-performance lignin-based dispersants are crucial steps in realizing the value-added utilization of lignin on an industrial scale. Such process depends heavily on an understanding of the dispersion mechanism of lignin-based dispersants. Here, atomic force microscopy (AFM) is employed to quantitatively investigate the dispersion mechanism of a lignosulfonate/silica (LS/SiO2) system under different pH conditions. The results show that the repulsive force between SiO2 particles in LS solution is stronger than it is in water, resulting in better dispersion stability. The Derjaguin–Landau–Verwey–Overbeek (DLVO) formula as well as the DLVO formula combined with steric repulsion is utilized for the fitting of the AFM force/distance (F/D) curves between the SiO2 probe and substrate in water and in LS solution. Based on these fitting results, electrostatic and steric repulsive forces are respectively calculated, yielding further evidence that LS provides strong steric repulsion between SiO2 particles. Further studies indicate that the adsorbance of LS on SiO2 (Q), the normalized interaction constant (A), and the characteristic length (L) are the three critical factors affecting steric repulsion in the LS/SiO2 system. Based on the above conclusions, a novel quaternized grafted-sulfonation lignin (QAGSL) dispersant is designed and prepared. The QAGSL dispersant exhibits good dispersing performance for SiO2 and real cement particles. This work provides a fundamental and quantitative understanding of the dispersion mechanism in the LS/inorganic particle system and provides important guidance for the development of high-performance lignin-based dispersants.


Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5


[ 1 ] Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 2010;110(6):3552–99. link1

[ 2 ] Bernier E, Lavigne C, Robidoux PY. Life cycle assessment of kraft lignin for polymer applications. Int J Life Cycle Assess 2013;18(2):520–8. link1

[ 3 ] Zhang J, Chen Y, Sewell P, Brook MA. Utilization of softwood lignin as both crosslinker and reinforcing agent in silicone elastomers. Green Chem 2015;17 (3):1811–9. Correction in: Green Chem 2015,17(5):3176.

[ 4 ] Li Y, Zhu H, Yang C, Zhang Y, Xu J, Lu M. Synthesis and super retarding performance in cement production of diethanolamine modified lignin surfactant. Constr Build Mater 2014;52:116–21. link1

[ 5 ] Qiu X, Zeng W, Yu W, Xue Y, Pang Y, Li X, et al. Alkyl chain cross-linked sulfobutylated lignosulfonate: a highly efficient dispersant for carbendazim suspension concentrate. ACS Sustain Chem Eng 2015;3(7):1551–7. link1

[ 6 ] Xiong W, Yang D, Zhong R, Li Y, Zhou H, Qiu X. Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method. Ind Crops Prod 2015;74:285–92. link1

[ 7 ] Yu G, Li B, Wang H, Liu C, Mu X. Preparation of concrete superplasticizer by oxidation–sulfomethylation of sodium lignosulfonate. BioResources 2013;8 (1):1055–63. link1

[ 8 ] Houst YF, Bowen P, Perche F, Kauppi A, Borget P, Galmiche L, et al. Design and function of novel superplasticizers for more durable high performance concrete (superplast project). Cement Concr Res 2008;38(10):1197–209. link1

[ 9 ] Björnström J, Chandra S. Effect of superplasticizers on the rheological properties of cements. Mater Struct 2003;36(10):685–92. link1

[10] Plank J, Sakai E, Miao CW, Yu C, Hong JX. Chemical admixtures—chemistry, applications and their impact on concrete microstructure and durability. Cement Concr Res 2015;78:81–99. link1

[11] Klapiszewski Ł, Nowacka M, Siwin´ ska-Stefan´ ska K, Jesionowski T. Lignosulfonate and silica as precursors of advanced composites. Pol J Chem Technol 2013;15(3):103–9. link1

[12] Milczarek G, Motylenko M, Modrzejewska-Sikorska A, Klapiszewski Ł, Wysokowski M, Bazhenov VV, et al. Deposition of silver nanoparticles on organically-modified silica in the presence of lignosulfonate. RSC Adv 2014;4 (94):52476–84. link1

[13] Klapiszewski Ł, Zdarta J, Szatkowski T, Wysokowski M, Nowacka M, SzwarcRzepka K, et al. Silica/lignosulfonate hybrid materials: preparation and characterization. Open Chem 2014;12(6):719–35.

[14] Konował E, Modrzejewska-Sikorska A, Motylenko M, Klapiszewski Ł, Wysokowski M, Bazhenov VV, et al. Functionalization of organically modified silica with gold nanoparticles in the presence of lignosulfonate. Int J Biol Macromol 2016;85:74–81. link1

[15] Modrzejewska-Sikorska A, Konował E, Klapiszewski Ł, Nowaczyk G, Jurga S, Jesionowski T, et al. Lignosulfonate-stabilized selenium nanoparticles and their deposition on spherical silica. Int J Biol Macromol 2017;103:403–8. link1

[16] Li R, Yang DJ, Guo WY, Qiu XQ. The adsorption and dispersing mechanisms of sodium lignosulfonate on Al2O3 particles in aqueous solution. Holzforschung 2013;67(4):387–94. link1

[17] Megiatto JD, Cerrutti BM, Frollini E. Sodium lignosulfonate as a renewable stabilizing agent for aqueous alumina suspensions. Int J Biol Macromol 2016;82:927–32. link1

[18] Colombo A, Geiker MR, Justnes H, Lauten RA, De Weerdt K. On the effect of calcium lignosulfonate on the rheology and setting time of cement paste. Cement Concr Res 2017;100:435–44. link1

[19] Wang CC, Sivashanmugan K, Chen CK, Hong JR, Sung WI, Liao JD, et al. Specific unbinding forces between mutated human P-selectin glycoprotein ligand-1 and viral protein-1 measured using force spectroscopy. J Phys Chem Lett 2017;8(21):5290–5. link1

[20] Shi C, Chan DYC, Liu Q, Zeng H. Probing the hydrophobic interaction between air bubbles and partially hydrophobic surfaces using atomic force microscopy. J Phys Chem C 2014;118(43):25000–8. link1

[21] Hutter JL, Bechhoefer J. Calibration of atomic-force microscope tips. Rev Sci Instrum 1993;64(7):1868–73. link1

[22] Geng Y, Yan Y, Wang J, Brousseau E, Sun Y, Sun Y. Fabrication of periodic nanostructures using AFM tip-based nanomachining: combining groove and material pile-up topographies. Engineering 2018;4(6):787–95. link1

[23] Dufrêne YF, Martínez-Martín D, Medalsy I, Alsteens D, Müller DJ. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat Methods 2013;10(9):847–54. link1

[24] Li X, Feng Y, Chu G, Ning N, Tian M, Zhang L. Directly and quantitatively studying the interfacial interaction between SiO2 and elastomer by using peak force AFM. Compos Commun 2018;7:36–41. link1

[25] Ding YH, Zhang P, Ren HM, Zhuo Q, Yang ZM, Jiang X, et al. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy. Appl Surf Sci 2011;258(3):1077–81. link1

[26] Yoo HY, Huang J, Li L, Foo M, Zeng H, Hwang DS. Nanomechanical contribution of collagen and von Willebrand factor A in marine underwater adhesion and its implication for collagen manipulation. Biomacromolecules 2016;17 (3):946–53. link1

[27] Binazadeh M, Faghihnejad A, Unsworth LD, Zeng H. Understanding the effect of secondary structure on molecular interactions of poly-L-lysine with different substrates by SFA. Biomacromolecules 2013;14(10):3498–508. link1

[28] Zeng H, Hwang DS, Israelachvili JN, Waite JH. Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proc Natl Acad Sci USA 2010;107(29):12850–3. link1

[29] Yang B, Ayyadurai N, Yun H, Choi YS, Hwang BH, Huang J, et al. In vivo residuespecific dopa-incorporated engineered mussel bioglue with enhanced adhesion and water resistance. Angew Chem Int Ed Engl 2014;126 (49):13578–82. link1

[30] Qin C, Clarke K, Li K. Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnol Biofuels 2014;7(1):65. link1

[31] Cai C, Pang Y, Zhan X, Zeng M, Lou H, Qian Y, et al. Using temperatureresponsive zwitterionic surfactant to enhance the enzymatic hydrolysis of lignocelluloses and recover cellulase by cooling. Bioresour Technol 2017;243:1141–8. link1

[32] Israelachvili JN. Intermolecular and surface forces. 3rd ed. California: Academic Press; 2011. link1

[33] Lou H, Lai H, Wang M, Pang Y, Yang D, Qiu X, et al. Preparation of lignin-based superplasticizer by graft sulfonation and investigation of the dispersive performance and mechanism in a cementitious system. Ind Eng Chem Res 2013;52(46):16101–9. link1

[34] Kuhl TL, Leckband DE, Lasic DD, Israelachvili JN. Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups. Biophys J 1994;66(5):1479–88. link1

[35] Uchikawa H, Hanehara S, Sawaki D. The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture. Cement Concr Res 1997;27(1):37–50. link1

[36] Yoshioka K, Sakai E, Daimon M, Kitahara A. Role of steric hindrance in the performance of superplasticizers for concrete. J Am Ceram Soc 1997;80 (10):2667–71. link1

[37] Anderson JH, Parks GA. Electrical conductivity of silica gel in the presence of adsorbed water. J Phys Chem 1968;72(10):3662–8. link1

[38] Wu SH, Mou CY, Lin HP. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 2013;42(9):3862–75. link1

[39] Qiu X, Kong Q, Zhou M, Yang D. Aggregation behavior of sodium lignosulfonate in water solution. J Phys Chem B 2010;114(48):15857–61. link1

Related Research