Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 23, Issue 4 doi: 10.1016/j.eng.2021.09.021

Lightning Flashover Characteristics of a Full-Scale AC 500 kV Transmission Tower with Composite Cross Arms

a State Lab of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
b Shandong Electrical Engineering & Equipment Group Co., Ltd., Jinan 250024, China
c State Grid Jibei Electric Power Co., Ltd. Research Institute, North China Electric Power Research Institute Co., Ltd., Beijing 100045, China

Received: 2021-03-10 Revised: 2021-07-18 Accepted: 2021-09-29 Available online: 2022-04-04

Next Previous

Abstract

Overhead transmission lines (OTLs) have always been the major means of power delivery. With the significant increase of transmission voltage and transmission capacity, the dimensions of transmission towers are increasing accordingly, resulting in extensive occupation of land resources. Towers with composite cross arms are a promising solution to this problem, considering the remarkable performance of composite line insulators. In this research, a full-scale alternating current (AC) 500 kV model of a transmission tower with composite cross arms is manufactured and applied under a lightning overvoltage of different polarities. The developing process of streamer-leader discharge is recorded with a high-speed camera, and the major path of the flashover is identified. The flashover voltages are measured and corrected to standard conditions while considering the air humidity and air density, and clearly confirm the polarity effect. The tower’s lightning-withstand level is calculated based on the tower structure and the flashover characteristics. Based on the results obtained from full-scale experiments, the feasibility of composite cross arms is confirmed, and a structural optimization is proposed.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

References

[ 1 ] Liu Y, Yu Y, Gao N, Wu F. A grid as smart as the internet. Engineering 2020;6(7):778‒88. link1

[ 2 ] Liang X, Li S, Gao Y, Su Z, Zhou J. Improving the outdoor insulation performance of Chinese EHV and UHV AC and DC overhead transmission lines. IEEE Electr Insul M 2020;36(4):7‒25. link1

[ 3 ] Yu Y, Liu Y, Qin C, Yang T. Theory and method of power system integrated security region irrelevant to operation states: an introduction. Engineering 2020;6(7):754‒77. link1

[ 4 ] Fang Y, Wang L, Li R, Zhang Q, Gao J, Song B. A modified model for discharge voltage of AC transmission line-tower air gaps. IEEE Access 2019;7:71472‒80. link1

[ 5 ] Shen Y, Liang X, Wang J, Wu C, Wang G, Gao C. Pollution characteristics of AC 500 kV composite cross-arm in high altitude area. High Voltage Eng 2017;43(8):2760‒8. Chinese.

[ 6 ] Zachariades C, Rowland SM, Cotton I, Peesapati V, Chambers D. Development of electric-field stress control devices for a 132 kV insulating cross-arm using finite-element analysis. IEEE T Power Deliver 2016;31(5):2105‒13. link1

[ 7 ] Jahangiri T, Wang Q, Bak CL, da Silva FF, Skouboe H. Electric stress computations for designing a novel unibody composite cross-arm using finite element method. IEEE T Dielect El In 2017;24(6):3567‒77. link1

[ 8 ] Amir AL, Ishak MR, Yidris N, Zuhri MYM, Asyraf MRM. Potential of honeycomb-filled composite structure in composite cross-arm component: a review on recent progress and its mechanical properties. Polymers 2021;13(8):1341. link1

[ 9 ] Gao Y, Wu C, Liang X, Liu Y, Wang G, Gao C. Electric field and electromagnetic environment analyses of a 500 kV composite cross arm. In: 2015 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP 2015); 2015 Oct 18‒21; Ann Arbor, MI, USA; Piscataway: IEEE; 2015. p. 399‒402. link1

[10] Yang X, Wang Q, Wang H, Zhang S, Peng Z. Transient electric field computation for composite cross-arm in 750 kV AC transmission line under lightning impulse voltage. IEEE T Dielect El In 2016;23(4):1942‒50. link1

[11] Huo F, Zhang P, Yu Y, Liu Q, Chu L, Wang X. Electric field calculation and grading ring design for 750 kV four-circuits transmission line on the same tower with six cross-arms. In: The 14th IET International Conference on AC and DC Power Transmission (ACDC 2018); 2018 Jun 28‒29; Chengdu, China. Piscataway: IEEE; 2018. p. 3155‒9. link1

[12] Yang Y, Li N, Peng Z, Liao J, Wang Q. Potential distribution computation and structure optimization for composite cross-arms in 750 kV AC transmission line. IEEE T Dielect El In 2014;21(4):1660‒9. link1

[13] Zhang Z, Zhao J, Zhang D, Jiang X, Li Y, Wu B, et al. Study on the dc flashover performance of standard suspension insulator with ring-shaped non-uniform pollution. High Volt 2018;3(2):133‒9. link1

[14] Sima W, Sun P, Yang M, Wu J, Hua J. Impact of time parameters of lightning impulse on the breakdown characteristics of oil paper insulation. High Volt 2016;1(1):18‒24. link1

[15] Datsios ZG, Mikropoulos PN, Tsovilis TE. Effects of lightning channel equivalent impedance on lightning performance of overhead transmission lines. IEEE T Electromagn C 2019;61(3):623‒30. link1

[16] Jiang X, Hu J, Zhang Z, Yuan J. Switching impulse flashover performance of different types of insulators at high altitude sites of above 2800 m. IEEE T Dielect El In 2008;15(5):1340‒5. link1

[17] Malicki P, Papenheim S, Kizilcay M. Shielding failure analysis of a hybrid transmission line with AC and DC systems on the same tower. Electr Pow Syst Res 2018;159:2‒8. link1

[18] Zeng R, Zhuang C, Zhou X, Chen S, Wang Z, Yu Z, et al. Survey of recent progress on lightning and lightning protection research. High Volt 2016;1(1):2‒10. link1

[19] Chen W, Zeng R, He H. Research progress of long air gap discharges. High Volt Eng 2013;39(6):1281‒95. Chinese.

[20] Jiang Z, Wu W, Wang B, Xie P, Li H, Lin F. Design and test of 500 kV lightning protection insulator. IEEE Access 2019;7:135957‒63. link1

[21] Asif M, Lee HY, Khan UA, Park KH, Lee BW. Analysis of transient behavior of mixed high voltage dc transmission line under lightning strikes. IEEE Access 2019;7:7194‒205. link1

[22] IEC 60060: High-voltage test techniques. International Standard. Switzerland: IEC Central Office; 2020.

[23] Thien YV, Azis N, Jasni J, Kadir MZAA, Yunus R, Yaakub Z. Pre-breakdown streamer propagation and positive lightning breakdown characteristics of palm oil impregnated aged pressboard. IEEE Access 2020;8:58836‒44. link1

[24] Li G, Liao W, Li Q, Ding Y, Sun L. Voltage output performance of 7200 kV/480 kJ impulse voltage generator. Proc CSEE 2008;28(25):1‒7. Chinese.

[25] Qiu Z, Wang X, Ruan J. Application of a SVR model to predict lightning impulse flashover voltages of parallel gaps for insulator strings. IEEJ T Electr Electr 2019;14(10):1455‒62. link1

[26] Garolera A, Cummins K, Madsen S, Holboell J, Myers J. Multiple lightning discharges in wind turbines associated with nearby cloud-to-ground lightning. IEEE T Sustain Energ 2015;6(2):526‒33. link1

[27] Liang X. Research on the 500 kV composite insulator [Dissertation]. Beijing: Tsinghua University; 1990. Chinese.

[28] Liang X, Zhou Y, Zeng R. High voltage engineering. 2nd ed. Beijing: Tsinghua Press; 2015. Chinese.

[29] IEC 60071: Insulation co-ordination. International Standard. Switzerland: IEC Central Office; 2019.

[30] Xie G. Overvoltage in power system. Beijing: China Electric Power Press; 2018. Chinese.

Related Research