Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 11, Issue 4 doi: 10.1016/j.eng.2021.10.013

Efficient Splitting of Trans-/Cis-Olefins Using an Anion-Pillared Ultramicroporous Metal-Organic Framework with Guest-Adaptive Pore Channels

a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
c Advanced Membranes & Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

Received: 2021-04-30 Revised: 2021-09-13 Accepted: 2021-10-21 Available online: 2021-12-08

Next Previous

Abstract

Trans-/cis-olefin isomers play a vital role in the petrochemical industry. The paucity of energy-efficient technologies for their splitting is mainly due to the similarities of their physicochemical properties. Herein, two new tailor-made anion-pillared ultramicroporous metal–organic frameworks (MOFs), ZU-36-Ni and ZU-36-Fe (GeFSIX-3-Ni and GeFSIX-3-Fe) are reported for the first time for the efficient trans-/cis-2-butene (trans-/cis-C4H8) mixture splitting by enhanced molecular exclusion. Notably, ZU-36-Ni unexpectedly exhibited smart guest-adaptive pore channels for trapping trans-C4H8 with a remarkable adsorption capacity (2.45 mmol∙g−1) while effectively rejecting cis-C4H8 with a high purity of 99.99%. The dispersion-corrected density functional theory (DFT-D) calculation suggested that the guest-adaptive behavior of ZU-36-Ni in response to trans-C4H8 is derived from the organic linker rotation and the optimal pore dimensions, which not only improve the favorable adsorption/diffusion of trans-C4H8 with optimal host–guest interactions, but also enhance the size-exclusion of cis-C4H8. This work opens a new avenue for pore engineering in advanced smart or adaptive porous materials for specific applications involving guest molecular recognition.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

[ 1 ] Wojcieszak R, Santarelli F, Paul S, Dumeignil F, Cavani F, Gonçalves RV. Recent developments in maleic acid synthesis from bio-based chemicals. Sustain Chem Process 2015;3(1):9. link1

[ 2 ] Fenard Y, Dayma G, Halter F, Foucher F, Serinyel Z, Dagaut P. Experimental and modeling study of the oxidation of 1-butene and cis-2-butene in a jet-stirred reactor and a combustion vessel. Energy Fuels 2015;29(2):1107–18. link1

[ 3 ] Limsangkass W, Praserthdam P, Phatanasri S, Panpranot J, Poovarawan N, Jareewatchara W, et al. Comparative effect of nano-sized ZrO2 and TiO2 additional supports in silica-supported tungsten catalysts on performance in metathesis of mthylene and 2-butene to propylene. Catal Lett 2014;144 (9):1524–9. link1

[ 4 ] Ricci G, Leone G, Boccia AC, Pierro I, Zanchin G, Mauri M, et al. Perfectly alternating ethylene/2-butene copolymers by hydrogenation of highly stereoregular 1,4-poly(1,3-diene)s: synthesis and characterization. Macromolecules 2017;50(3):754–61. link1

[ 5 ] Limsangkass W, Phatanasri S, Praserthdam P, Panpranot J, Jareewatchara W, Na Ayudhya SK, et al. Effect of nano-sized TiO2 additional support in WO3/SiO2 catalyst systems on metathesis of ethylene and trans-2-butene to propylene. Catal Lett 2013;143(9):919–25. link1

[ 6 ] Maksasithorn S, Praserthdam P, Suriye K, Devillers M, Debecker DP. WO3-based catalysts prepared by non-hydrolytic sol-gel for the production of propene by cross-metathesis of ethene and 2-butene. Appl Catal A Gen 2014;488:200–7. link1

[ 7 ] Tijsebaert B, Varszegi C, Gies H, Xiao FS, Bao X, Tatsumi T, et al. Liquid phase separation of 1-butene from 2-butenes on all-silica zeolite RUB-41. Chem Commun 2008(21):2480–2. link1

[ 8 ] Chen J, Wang J, Guo L, Li L, Yang Q, Zhang Z, et al. Adsorptive separation of geometric isomers of 2-butene on gallate-based metal–organic frameworks. ACS Appl Mater Interfaces 2020;12(8):9609–16. link1

[ 9 ] Gehre M, Guo Z, Rothenberg G, Tanase S. Sustainable separations of C4- hydrocarbons by using microporous materials. ChemSusChem 2017;10 (20):3947–63. link1

[10] Assen AH, Virdis T, De Moor W, Moussa A, Eddaoudi M, Baron G, et al. Kinetic separation of C4 olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size. Chem Eng J 2021;413:127388. link1

[11] Maes M, Alaerts L, Vermoortele F, Ameloot R, Couck S, Finsy V, et al. Separation of C5-hydrocarbons on microporous materials: complementary performance of MOFs and zeolites. J Am Chem Soc 2010;132(7):2284–92. link1

[12] Liu H, He Y, Jiao J, Bai D, Chen DL, Krishna R, et al. A porous zirconium-based metal–organic framework with the potential for the separation of butene isomers. Chemistry 2016;22(42):14988–97.

[13] Kishida K, Okumura Y, Watanabe Y, Mukoyoshi M, Bracco S, Comotti A, et al. Recognition of 1,3-butadiene by a porous coordination polymer. Angew Chem Int Ed Engl 2016;55(44):13784–8. link1

[14] Liao PQ, Huang NY, Zhang WX, Zhang JP, Chen XM. Controlling guest conformation for efficient purification of butadiene. Science 2017;356 (6343):1193–6. link1

[15] Bao Z, Chang G, Xing H, Krishna R, Ren Q, Chen B. Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy Environ Sci 2016;9(12):3612–41. link1

[16] Li JR, Sculley J, Zhou HC. Metal–organic frameworks for separations. Chem Rev 2012;112(2):869–932.

[17] Zhang Z, Peh SB, Kang C, Chai K, Zhao D. Metal–organic frameworks for C6–C8 hydrocarbon separations. Energy Chem 2021;3(4):100057. link1

[18] Adil K, Belmabkhout Y, Pillai RS, Cadiau A, Bhatt PM, Assen AH, et al. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem Soc Rev 2017;46 (11):3402–30. link1

[19] Zhao X, Wang Y, Li DS, Bu X, Feng P. Metal–organic frameworks for separation. Adv Mater 2018;30(37):e1705189.

[20] Ding Q, Zhang Z, Yu C, Zhang P, Wang J, Cui X, et al. Exploiting equilibriumkinetic synergetic effect for separation of ethylene and ethane in a microporous metal–organic framework. Sci Adv 2020;6(15):eaaz4322. link1

[21] Lin R, Xiang S, Zhou W, Chen B. Microporous metal–organic framework materials for gas separation. Chem 2020;6(2):337–63.

[22] Fan W, Yuan S, Wang W, Feng L, Liu X, Zhang X, et al. Optimizing multivariate metal–organic frameworks for efficient C2H2/CO2 separation. J Am Chem Soc 2020;142(19):8728–37. link1

[23] Bloch ED, Queen WL, Krishna R, Zadrozny JM, Brown CM, Long JR. Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 2012;335(6076):1606–10. link1

[24] Antypov D, Shkurenko A, Bhatt PM, Belmabkhout Y, Adil K, Cadiau A, et al. Differential guest location by host dynamics enhances propylene/propane separation in a metal–organic framework. Nat Commun 2020;11(1):6099. link1

[25] Cadiau A, Adil K, Bhatt PM, Belmabkhout Y, Eddaoudi M. A metal–organic framework-based splitter for separating propylene from propane. Science 2016;353(6295):137–40. link1

[26] Lee CY, Bae YS, Jeong NC, Farha OK, Sarjeant AA, Stern CL, et al. Kinetic separation of propene and propane in metal–organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. J Am Chem Soc 2011;133(14):5228–31. link1

[27] Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal– organic frameworks. Chem Soc Rev 2009;38(5):1477–504. link1

[28] Zhang Z, Peh SB, Wang Y, Kang C, Fan W, Zhao D. Efficient trapping of trace acetylene from ethylene in an ultramicroporous metal–organic framework: synergistic effect of high-density open metal and electronegative sites. Angew Chem Int Ed Engl 2020;59(43):18927–32. link1

[29] Xue DX, Belmabkhout Y, Shekhah O, Jiang H, Adil K, Cairns AJ, et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J Am Chem Soc 2015;137 (15):5034–40. link1

[30] Yang S, Ramirez-Cuesta AJ, Newby R, Garcia-Sakai V, Manuel P, Callear SK, et al. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nat Chem 2015;7(2):121–9. link1

[31] Zhang Z, Ding Q, Cui J, Cui X, Xing H. Fine-tuned pore dimension in hybrid ultramicroporous materials boosting simultaneous trapping of trace alkynes from alkenes. Small 2020;16(49):e2005360. link1

[32] Cui X, Chen K, Xing H, Yang Q, Krishna R, Bao Z, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016;353(6295):141–4. link1

[33] Wu X, Xie Y, Liu J, He T, Zhang Y, Yu J, et al. Integrating multiple adsorption sites and tortuous diffusion paths into a metal–organic framework for C3H4/ C3H6 separation. J Mater Chem A 2019;7(44):25254–7. link1

[34] Zhang Z, Cui X, Yang L, Cui J, Bao Z, Yang Q, et al. Hexafluorogermanate (GeFSIX) anion-functionalized hybrid ultramicroporous materials for efficiently trapping acetylene from ethylene. Ind Eng Chem Res 2018;57 (21):7266–74. link1

[35] Zhang PD, Wu XQ, He T, Xie LH, Chen Q, Li JR. Selective adsorption and separation of C2 hydrocarbons in a ‘‘flexible-robust” metal–organic framework based on a guest-dependent gate-opening effect. Chem Commun 2020;56 (41):5520–3.

[36] Li J, Bhatt PM, Li J, Eddaoudi M, Liu Y. Recent progress on microfine design of metal–organic frameworks: structure regulation and gas sorption and separation. Adv Mater 2020;32(44):2002563. link1

[37] Zhang Z, Yang Q, Cui X, Yang L, Bao Z, Ren Q, et al. Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew Chem Int Ed Engl 2017;56(51):16282–7. link1

[38] Zhang Z, Tan B, Wang P, Cui X, Xing H. Highly efficient separation of linear and branched C4 isomers with a tailor-made metal–organic framework. AIChE J 2020;66(7):e16236. link1

[39] Sholl DS, Lively RP. Seven chemical separations to change the world. Nature 2016;532(7600):435–7. Corrected in: Nature 2016;533(7601):316.

[40] van den Bergh J, Gücüyener C, Pidko EA, Hensen EJM, Gascon J, Kapteijn F. Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. Chemistry 2011;17(32):8832–40. link1

[41] Palomino M, Cantín A, Corma A, Leiva S, Rey F, Valencia S. Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chem Commun 2007 (12):1233–5. link1

[42] Zhu W, Kapteijn F, Moulijn JA, Jansen JC. Selective adsorption of unsaturated linear C4 molecules on the all-silica DD3R. Phys Chem Chem Phys 2000;2 (8):1773–9. link1

[43] Subramanian S, Zaworotko MJ. Porous solids by design:[Zn(4,4, - bpy)2(SiF6)]n.xDMF, a single framework octahedral coordination polymer with large square channels. Angew Chem Int Ed Engl 1995;34(19):2127–9. link1

[44] Noro S, Kitagawa S, Kondo M, Seki K. A new, methane adsorbent, porous coordination polymer. Angew Chem Int Ed Engl 2000;39(12):2081–4. link1

[45] Shekhah O, Belmabkhout Y, Chen Z, Guillerm V, Cairns A, Adil K, et al. Made-toorder metal–organic frameworks for trace carbon dioxide removal and air capture. Nat Commun 2014;5(1):4228. link1

[46] O’Nolan D, Kumar A, Zaworotko MJ. Water vapor sorption in hybrid pillared square grid materials. J Am Chem Soc 2017;139(25):8508–13. link1

[47] Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013;495(7439):80–4. link1

[48] Kumar A, Hua C, Madden DG, O’Nolan D, Chen KJ, Keane LJ, et al. Hybrid ultramicroporous materials (HUMs) with enhanced stability and trace carbon capture performance. Chem Commun 2017;53(44):5946–9.

[49] Zhang Z, Ding Q, Cui X, Jiang XM, Xing H. Fine-tuning and selective-binding within an anion-functionalized ultramicroporous metal–organic framework for efficient olefin/paraffin separation. ACS Appl Mater Interfaces 2020;12 (36):40229–35. link1

[50] Chen KJ, Scott H, Madden D, Pham T, Kumar A, Bajpai A, et al. Benchmark C2H2/ CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials. Chem 2016;1(5):753–65. link1

[51] Zhang Z, Ding Q, Peh SB, Zhao D, Cui J, Cui X, et al. Mechano-assisted synthesis of an ultramicroporous metal–organic framework for trace CO2 capture. Chem Commun 2020;56(56):7726–9. link1

[52] Bhatt PM, Belmabkhout Y, Cadiau A, Adil K, Shekhah O, Shkurenko A, et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. J Am Chem Soc 2016;138(29):9301–7. link1

[53] Walton KS, Sholl DS. Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE J 2015;61(9):2757–62. link1

Related Research