Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 13, Issue 6 doi: 10.1016/j.eng.2021.10.021

Macroencapsulation Devices for Cell Therapy

a College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
b Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
c Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
d Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, United States
e Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, United States
f Zhejiang Laboratory of Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
g MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

# These authors contributed equally to this work.

Received: 2021-07-07 Revised: 2021-09-24 Accepted: 2021-10-25 Available online: 2022-02-17

Next Previous

Abstract

Macroencapsulation has been widely used in cell therapy due to its capability to provide immune-privileged sites for implanted allogeneic or xenogeneic cells. Macroencapsulation also serve to provide mechanical and physiochemical support for maintaining cell expansion and promoting therapeutic functions. Macroencapsulation devices such as membrane-controlled release systems, hydrogels, microneedle (MN) array patches, and three-dimensional (3D) stents have shown promising in-lab and preclinical results in the maintenance of long-term cell survival and the strengthening of treatment efficacy. Recent studies focus on expanding the applications of these devices to new cell-based areas such as chimeric antigen receptor (CAR)-T cell delivery, cardiovascular disease therapy, and the exploration of new materials, construction methods, and working principles to augment treatment efficacy and prolong therapy duration. Here, we survey innovative platforms and approaches, as well as translation outcomes, for advancing the performance and applications of macrodevices for cell-based therapies. A discussion and critique regarding future opportunities and challenges is also provided.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

References

[ 1 ] Tomei AA, Villa C, Ricordi C. Development of an encapsulated stem cell-based therapy for diabetes. Expert Opin Biol Ther 2015;15(9):1321–36. link1

[ 2 ] Lee MK, Bae YH. Cell transplantation for endocrine disorders. Adv Drug Deliv Rev 2000;42(1–2):103–20. link1

[ 3 ] Aguayo-Mazzucato C, Bonner-Weir S. Stem cell therapy for type 1 diabetes mellitus. Nat Rev Endocrinol 2010;6(3):139–48. link1

[ 4 ] Xie M, Ye H, Wang H, Charpin-El Hamri G, Lormeau C, Saxena P, et al. b-cellmimetic designer cells provide closed-loop glycemic control. Science 2016;354(6317):1296–301. link1

[ 5 ] Sen S, McDonald SP, Coates PT, Bonder CS. Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease. Clin Sci 2011;120(7):263–83. link1

[ 6 ] Rodrigues DB, Chammas R, Malavasi NV, da Costa PLN, Chura-Chambi RM, Balduino KN, et al. Anti-tumor therapy with macroencapsulated endostatin producer cells. BMC Biotechnol 2010;10(1):19. link1

[ 7 ] June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018;359(6382):1361–5. link1

[ 8 ] Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med 2006;354 (17):1813–26. link1

[ 9 ] Salmons B, Lohr M, Gunzburg WH. Treatment of inoperable pancreatic carcinoma using a cell-based local chemotherapy: results of a phase I/II clinical trial. J Gastroenterol 2003;38:78–84. link1

[10] Kim SU, de Vellis J. Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 2009;87(10):2183–200. link1

[11] Eyjolfsdottir H, Eriksdotter M, Linderoth B, Lind G, Juliusson B, Kusk P, et al. Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer’s disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimers Res Ther 2016;8:30. link1

[12] Luo XM, Lin H, Wang W, Geaney MS, Law L, Wynyard S, et al. Recovery of neurological functions in non-human primate model of Parkinson’s disease by transplantation of encapsulated neonatal porcine choroid plexus cells. J Parkinsons Dis 2013;3(3):275–91. link1

[13] Skinner SJ, Geaney MS, Lin H, Muzina M, Anal AK, Elliott RB, et al. Encapsulated living choroid plexus cells: potential long-term treatments for central nervous system disease and trauma. J Neural Eng 2009;6(6):065001. link1

[14] Snow B, Mulroy E, Bok A, Simpson M, Smith A, Taylor K, et al. A phase IIb, randomised, double-blind, placebo-controlled, dose-ranging investigation of the safety and efficacy of NTCELL [immunoprotected (alginateencapsulated) porcine choroid plexus cells for xenotransplantation] in patients with Parkinson’s disease. Parkinsonism Relat Disord 2019;61:88–93. link1

[15] Eriksdotter-Jönhagen M, Linderoth B, Lind G, Aladellie L, Almkvist O, Andreasen N, et al. Encapsulated cell biodelivery of nerve growth factor to the Basal forebrain in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 2012;33(1):18–28. link1

[16] Bloch J, Bachoud-Lévi AC, Déglon N, Lefaucheur JP, Winkel L, Palfi S, et al. Neuroprotective gene therapy for Huntington’s disease, using polymerencapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther 2004;15(10):968–75. link1

[17] Facklam AL, Volpatti LR, Anderson DG. Biomaterials for personalized cell therapy. Adv Mater 2020;32(13):1902005. link1

[18] Orive G, Santos E, Pedraz JL, Hernández RM. Application of cell encapsulation for controlled delivery of biological therapeutics. Adv Drug Deliv Rev 2014;67–68:3–14. link1

[19] Shao J, Xue S, Yu G, Yu Y, Yang X, Bai Y, et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci Transl Med 2017;9(387):eaal2298. link1

[20] Alessandri G, Emanueli C, Madeddu P. Genetically engineered stem cell therapy for tissue regeneration. Ann N Y Acad Sci 2004;1015(1):271–84. link1

[21] Serra M, Brito C, Correia C, Alves PM. Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 2012;30 (6):350–9. link1

[22] Carpenter MK, Frey-Vasconcells J, Rao MS. Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 2009;27(7):606–13. link1

[23] Hong KU, Bolli R. Cardiac stem cell therapy for cardiac repair. Curr Treat Options Cardiovasc Med 2014;16(7):324. link1

[24] Orive G, Emerich D, Khademhosseini A, Matsumoto S, Hernández RM, Pedraz JL, et al. Engineering a clinically translatable bioartificial pancreas to treat type I diabetes. Trends Biotechnol 2018;36(4):445–56. link1

[25] Santos-Vizcaino E, Orive G, Pedraz JL, Hernandez RM, et al. Clinical applications of cell encapsulation technology. Methods Mol Biol 2020;2100:473–91. link1

[26] Wilson JT, Chaikof EL. Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev 2008;60(2):124–45. link1

[27] Thanos CG, Gaglia JL, Pagliuca FW. Considerations for successful encapsulated b-cell therapy. In: Emerich DF, Orive G, editors. Cell therapy. Berlin: Springer; 2017. p. 19–52. link1

[28] Mitrousis N, Fokina A, Shoichet MS. Biomaterials for cell transplantation. Nat Rev Mater 2018;3(11):441–56. link1

[29] Tomei AA, Manzoli V, Fraker CA, Giraldo J, Velluto D, Najjar M, et al. Device design and materials optimization of conformal coating for islets of langerhans. Proc Natl Acad Sci USA 2014;111(29):10514–9. link1

[30] Mazzitelli S, Capretto L, Quinci F, Piva R, Nastruzzi C. Preparation of cellencapsulation devices in confined microenvironment. Adv Drug Deliv Rev 2013;65(11–12):1533–55. link1

[31] Yu Y, Wen H, Ma J, Lykkemark S, Xu H, Qin J. Flexible fabrication of biomimetic bamboo-like hybrid microfibers. Adv Mater 2014;26(16):2494–9. link1

[32] Desai T, Shea LD. Advances in islet encapsulation technologies. Nat Rev Drug Discov 2017;16(5):338–50. link1

[33] O’Sullivan ES, Vegas A, Anderson DG, Weir GC. Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr Rev 2011;32(6):827–44. link1

[34] Dimitrioglou N, Kanelli M, Papageorgiou E, Karatzas T, Hatziavramidis D. Paving the way for successful islet encapsulation. Drug Discov Today 2019;24 (3):737–48. link1

[35] Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, et al. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019;139:116–38. link1

[36] Krishnan R, Alexander M, Robles L, Foster CE, Lakey JRT. Islet and stem cell encapsulation for clinical transplantation. Rev Diabet Stud 2014;11 (1):84–101. link1

[37] Farina M, Alexander JF, Thekkedath U, Ferrari M, Grattoni A. Cell encapsulation: overcoming barriers in cell transplantation in diabetes and beyond. Adv Drug Deliv Rev 2019;139:92–115. link1

[38] Gamble A, Pepper AR, Bruni A, Shapiro AMJ. The journey of islet cell transplantation and future development. Islets 2018;10(2):80–94. link1

[39] Lathuilière A, Laversenne V, Astolfo A, Kopetzki E, Jacobsen H, Stampanoni M, et al. A subcutaneous cellular implant for passive immunization against amyloid-b reduces brain amyloid and tau pathologies. Brain 2016;139 (5):1587–604. link1

[40] Zanin MP, Pettingill LN, Harvey AR, Emerich DF, Thanos CG, Shepherd RK. The development of encapsulated cell technologies as therapies for neurological and sensory diseases. J Control Release 2012;160(1):3–13. link1

[41] Tang J, Wang J, Huang K, Ye Y, Su T, Qiao L, et al. Cardiac cell-integrated microneedle patch for treating myocardial infarction. Sci Adv 2018;4(11): eaat9365. link1

[42] Coon ME, Stephan SB, Gupta V, Kealey CP, Stephan MT. Nitinol thin films functionalized with CAR-T cells for the treatment of solid tumours. Nat Biomed Eng 2020;4(2):195–206. link1

[43] Kojima R, Bojar D, Rizzi G, Hamri GE, El-Baba MD, Saxena P, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun 2018;9(1):1305. link1

[44] Pellegrini S, Cantarelli E, Sordi V, Nano R, Piemonti L. The state of the art of islet transplantation and cell therapy in type 1 diabetes. Acta Diabetol 2016;53(5):683–91. link1

[45] Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, et al. Fiveyear follow-up after clinical islet transplantation. Diabetes 2005;54 (7):2060–9. link1

[46] Ricordi C, Strom TB. Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol 2004;4(4):259–68. link1

[47] Weir GC. Islet encapsulation: advances and obstacles. Diabetologia 2013;56 (7):1458–61. link1

[48] Basta G, Calafiore R. Immunoisolation of pancreatic islet grafts with no recipient’s immunosuppression: actual and future perspectives. Curr Diab Rep 2011;11(5):384–91. link1

[49] Desai TA, Tang Q. Islet encapsulation therapy—racing towards the finish line? Nat Rev Endocrinol 2018;14(11):630–2. link1

[50] Bose S, Volpatti LR, Thiono D, Yesilyurt V, McGladrigan C, Tang Y, et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. Nat Biomed Eng 2020;4(8):814–26. link1

[51] Agulnick AD, Ambruzs DM, Moorman MA, Bhoumik A, Cesario RM, Payne JK, et al. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med 2015;4(10):1214–22.

[52] D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005;23(12):1534–41. link1

[53] D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006;24(11):1392–401. link1

[54] Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008;26 (4):443–52. link1

[55] Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 2014;32(11):1121–33. link1

[56] beta-o2.com [Internet]. Jerusalem: Beta-O2 Technologies Ltd.; 2019 [cited 2021 Nov 1]. Available from: https://beta-o2.com/.

[57] Carlsson PO, Espes D, Sedigh A, Rotem A, Zimerman B, Grinberg H, et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas b-Air to patients with type 1 diabetes mellitus. Am J Transplant 2018;18(7):1735–44. link1

[58] A safety, tolerability, and efficacy study of VC-01TM combination product in subjects with type I diabetes mellitus [Internet]. Washington, DC: US National Library of Medicine; 2019 [cited 2021 Nov 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT02239354.

[59] viacyte.com [Internet]. San Diego: ViaCyte, Inc.; 2019 [cited 2021 Nov 1]. Available from: http://viacyte.com.

[60] A safety, tolerability and efficacy study of Serova’s Cell PouchTM for clinical islet transplantation [Internet]. Washington, DC: US National Library of Medicine; 2019 [cited 2021 Nov 1]. Available from: https://clinicaltrials.gov/ct2/show/ NCT03513939.

[61] A phase I/II study of the safety and efficacy of Sernova’s Cell PouchTM for therapeutic islet transplantation [Internet]. Washington, DC: US National Library of Medicine; 2019 [cited 2021 Nov 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT01652911.

[62] Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019;95:131–51. link1

[63] Song S, Roy S. Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: cells, biomaterials, and devices. Biotechnol Bioeng 2016;113(7):1381–402. link1

[64] Langer R, Peppas N. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 1981;2(4):201–14. link1

[65] Singh A, Peppas NA. Hydrogels and scaffolds for immunomodulation. Adv Mater 2014;26(38):6530–41. link1

[66] Islet cell replacement therapy for insulin-dependent diabetes [Internet]. Washington, DC: US National Library of Medicine; 2017 [cited 2021 Nov 1]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK476438/.

[67] Vaithilingam V, Tuch BE. Co-encapsulation of mesenchymal stromal cells to enhance islet function. In: Orlando G, Piemonti L, Ricordi C, Stratta RJ, Gruessner RWG, editors. Transplantation, bioengineering, and regeneration of the endocrine pancreas. Hoboken: Academic Press; 2020. p. 315–28. link1

[68] Chendke GS, Faleo G, Juang C, Parent AV, Bernards DA, Hebrok M, et al. Supporting survival of transplanted stem-cell-derived insulin-producing cells in an encapsulation device augmented with controlled release of amino acids. Adv Biosyst 2019;3(9):1900086. link1

[69] Coronel MM, Liang JP, Li Y, Stabler CL. Oxygen generating biomaterial improves the function and efficacy of beta cells within a macroencapsulation device. Biomaterials 2019;210:1–11. link1

[70] Papas KK, De Leon H, Suszynski TM, Johnson RC. Oxygenation strategies for encapsulated islet and beta cell transplants. Adv Drug Deliv Rev 2019;139:139–56. link1

[71] McQuilling JP, Sittadjody S, Pendergraft S, Farney AC, Opara EC. Applications of particulate oxygen-generating substances (POGS) in the bioartificial pancreas. Biomater Sci 2017;5(12):2437–47. link1

[72] Chang R, Faleo G, Russ HA, Parent AV, Elledge SK, Bernards DA, et al. Nanoporous immunoprotective device for stem-cell-derived b-cell replacement therapy. ACS Nano 2017;11(8):7747–57. link1

[73] Ludwig B, Zimerman B, Steffen A, Yavriants K, Azarov D, Reichel A, et al. A novel device for islet transplantation providing immune protection and oxygen supply. Horm Metab Res 2010;42(13):918–22. link1

[74] Ludwig B, Rotem A, Schmid J, Weir GC, Colton CK, Brendel MD, et al. Improvement of islet function in a bioartificial pancreas by enhanced oxygen supply and growth hormone releasing hormone agonist. Proc Natl Acad Sci USA 2012;109(13):5022–7. link1

[75] Barkai U, Weir GC, Colton CK, Ludwig B, Bornstein SR, Brendel MD, et al. Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transplant 2013;22(8):1463–76. link1

[76] Ludwig B, Reichel A, Steffen A, Zimerman B, Schally AV, Block NL, et al. Transplantation of human islets without immunosuppression. Proc Natl Acad Sci USA 2013;110(47):19054–8. link1

[77] Pepper AR, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro AMJ. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol 2015;33(5):518–23. link1

[78] Pepper AR, Pawlick R, Gala-Lopez B, MacGillivary A, Mazzuca DM, White DJG, et al. Diabetes is reversed in a murine model by marginal mass syngeneic islet transplantation using a subcutaneous cell pouch device. Transplantation 2015;99(11):2294–300. link1

[79] Etulain J, Mena HA, Meiss RP, Frechtel G, Gutt S, Negrotto S, et al. An optimised protocol for platelet-rich plasma preparation to improve its angiogenic and regenerative properties. Sci Rep 2018;8(1):1513. link1

[80] Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int 2018;2018:3057624. link1

[81] Paez-Mayorga J, Capuani S, Farina M, Lotito ML, Niles JA, Salazar HF, et al. Enhanced in vivo vascularization of 3D-printed cell encapsulation device using platelet-rich plasma and mesenchymal stem cells. Adv Healthc Mater 2020;9(19):2000670. link1

[82] Farina M, Chua CYX, Ballerini A, Thekkedath U, Alexander JF, Rhudy JR, et al. Transcutaneously refillable, 3D-printed biopolymeric encapsulation system for the transplantation of endocrine cells. Biomaterials 2018;177:125–38. link1

[83] Wang X, Brown NK, Wang B, Shariati K, Wang K, Fuchs S, et al. Local immunomodulatory strategies to prevent allo-rejection in transplantation of insulin-producing cells. Adv Sci 2021;8(17):2003708. link1

[84] Coronel MM, Martin KE, Hunckler MD, Barber G, O’Neill EB, Medina JD, et al. Immunotherapy via PD-L1-presenting biomaterials leads to long-term islet graft survival. Sci Adv 2020;6(35):eaba5573. link1

[85] Jiang Y, Chen M, Nie H, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother 2019;15(5):1111–22. link1

[86] Paez-Mayorga J, Capuani S, Hernandez N, Farina M, Chua CYX, Blanchard R, et al. Neovascularized implantable cell homing encapsulation platform with tunable local immunosuppressant delivery for allogeneic cell transplantation. Biomaterials 2020;257:120232. link1

[87] Song W, Chiu A, Wang LH, Schwartz RE, Li B, Bouklas N, et al. Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nat Commun 2019;10(1):4602. link1

[88] Nair GG, Tzanakakis ES, Hebrok M. Emerging routes to the generation of functional b-cells for diabetes mellitus cell therapy. Nat Rev Endocrinol 2020;16(9):506–18. link1

[89] Krawczyk K, Xue S, Buchmann P, Charpin-El-Hamri G, Saxena P, Hussherr MD, et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science 2020;368(6494):993–1001. link1

[90] Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci USA 2015;112 (27):8260–5. link1

[91] Wang J, Ye Y, Yu J, Kahkoska AR, Zhang X, Wang C, et al. Core–shell microneedle gel for self-regulated insulin delivery. ACS Nano 2018;12 (3):2466–73. link1

[92] Zhang Y, Wang J, Yu J, Wen D, Kahkoska AR, Lu Y, et al. Bioresponsive microneedles with a sheath structure for H2O2 and pH cascade-triggered insulin delivery. Small 2018;14(14):1704181. link1

[93] Ye Y, Wang C, Zhang X, Hu Q, Zhang Y, Liu Q, et al. A melanin-mediated cancer immunotherapy patch. Sci Immunol 2017;2(17):eaan5692. link1

[94] Hirobe S, Azukizawa H, Hanafusa T, Matsuo K, Quan YS, Kamiyama F, et al. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 2015;57:50–8. link1

[95] Ye Y, Wang J, Hu Q, Hochu GM, Xin H, Wang C, et al. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 2016;10(9):8956–63. link1

[96] Wang C, Ye Y, Hochu GM, Sadeghifar H, Gu Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett 2016;16(4):2334–40. link1

[97] Chen G, Chen Z, Wen D, Wang Z, Li H, Zeng Y, et al. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proc Natl Acad Sci USA 2020;117(7):3687–92. link1

[98] Chang H, Chew SWT, Zheng M, Lio DCS, Wiraja C, Mei Y, et al. Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng 2021;5 (9):1008–18. link1

[99] Zhang Y, Feng P, Yu J, Yang J, Zhao J, Wang J, et al. ROS-responsive microneedle patch for acne vulgaris treatment. Adv Ther 2018;1(3):1800035. link1

[100] Lee JW, Choi SO, Felner EI, Prausnitz MR. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small 2011;7 (4):531–9. link1

[101] Yang G, Chen Q, Wen D, Chen Z, Wang J, Chen G, et al. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano 2019;13(4):4354–60. link1

[102] Bae WG, Ko H, So JY, Yi H, Lee CH, Lee DH, et al. Snake fang-inspired stamping patch for transdermal delivery of liquid formulations. Sci Transl Med 2019;11 (503):eaaw3329. link1

[103] Hu Q, Chen Q, Gu Z. Advances in transformable drug delivery systems. Biomaterials 2018;178:546–58. link1

[104] Zhang Y, Yu J, Kahkoska AR, Wang J, Buse JB, Gu Z. Advances in transdermal insulin delivery. Adv Drug Deliv Rev 2019;139:51–70. link1

[105] Makvandi P, Jamaledin R, Chen G, Baghbantaraghdari Z, Zare EN, Di Natale C, et al. Stimuli-responsive transdermal microneedle patches. Mater Today 2021;47:206–22. link1

[106] Lee K, Goudie MJ, Tebon P, Sun W, Luo Z, Lee J, et al. Non-transdermal microneedles for advanced drug delivery. Adv Drug Deliv Rev 2020;165– 166:41–59. link1

[107] Ye Y, Yu J, Wang C, Nguyen NY, Walker GM, Buse JB, et al. Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Adv Mater 2016;28(16):3115–21. link1

[108] Tan RP, Hallahan N, Kosobrodova E, Michael PL, Wei F, Santos M, et al. Bioactivation of encapsulation membranes reduces fibrosis and enhances cell survival. ACS Appl Mater Interfaces 2020;12(51):56908–23. link1

[109] Wang X, Maxwell KG, Wang K, Bowers DT, Flanders JA, Liu W, et al. A nanofibrous encapsulation device for safe delivery of insulin-producing cells to treat type 1 diabetes. Sci Transl Med 2021;13(596):eabb4601. link1

[110] Zhang Y, Ding Y, Li X, Zheng D, Gao J, Yang Z. Supramolecular hydrogels of self-assembled zwitterionic-peptides. Chin Chem Lett. 2021;11:3633–40.

[111] Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater 2009;21(32–33):3307–29. link1

[112] Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 2006;18(11):1345–60. link1

[113] Peppas NA, Langer R. New challenges in biomaterials. Science 1994;263 (5154):1715–20. link1

[114] Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res 2015;6(2):105–21. link1

[115] Culver HR, Clegg JR, Peppas NA. Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc Chem Res 2018;51(10):2600.

[116] Peppas NA, Van Blarcom DS. Hydrogel-based biosensors and sensing devices for drug delivery. J Control Release 2016;240:142–50. link1

[117] Yang JS, Xie YJ, He W. Research progress on chemical modification of alginate: a review. Carbohydr Polym 2011;84(1):33–9. link1

[118] Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 2012;33(11):3279–305. link1

[119] Izeia L, Eufrasio-da-Silva T, Dolatshahi-Pirouz A, Ostrovidov S, Paolone G, Peppas NA, et al. Cell-laden alginate hydrogels for the treatment of diabetes. Expert Opin Drug Deliv 2020;17(8):1113–8. link1

[120] An D, Chiu A, Flanders JA, Song W, Shou D, Lu YC, et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc Natl Acad Sci USA 2018;115(2):E263–72. link1

[121] An D, Ji Y, Chiu A, Lu YC, Song W, Zhai L, et al. Developing robust, hydrogelbased, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies. Biomaterials 2015;37:40–8. link1

[122] Zhang L, Cao Z, Bai T, Carr L, Ella-Menye JR, Irvin C, et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 2013;31(6):553–6. link1

[123] Liu Q, Chiu A, Wang L, An D, Li W, Chen EY, et al. Developing mechanically robust, triazole-zwitterionic hydrogels to mitigate foreign body response (FBR) for islet encapsulation. Biomaterials 2020;230:119640. link1

[124] Liu Q, Chiu A, Wang LH, An D, Zhong M, Smink AM, et al. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nat Commun 2019;10(1):5262. link1

[125] Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 2013;12(10):932–7. link1

[126] Weaver JD, Headen DM, Aquart J, Johnson CT, Shea LD, Shirwan H, et al. Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci Adv 2017;3(6):e1700184. link1

[127] Weaver JD, Headen DM, Hunckler MD, Coronel MM, Stabler CL, García AJ. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation. Biomaterials 2018;172:54–65. link1

[128] Naficy S, Dehghani F, Chew YV, Hawthorne WJ, Le TYL. Engineering a porous hydrogel-based device for cell transplantation. ACS Appl Bio Mater 2020;3 (4):1986–94. link1

[129] Jhund PS, McMurray JJV. Heart failure after acute myocardial infarction: a lost battle in the war on heart failure? Circulation 2008;118(20):2019–21. link1

[130] Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir Med 2014;2 (12):1016–26. link1

[131] Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circ Res 2016;118(1):95–107. link1

[132] Nguyen PK, Neofytou E, Rhee JW, Wu JC. Potential strategies to address the major clinical barriers facing stem cell regenerative therapy for cardiovascular disease. JAMA Cardiol 2016;1(8):953. link1

[133] Kim IG, Hwang MP, Park JS, Kim SH, Kim JH, Kang HJ, et al. Stretchable ECM patch enhances stem cell delivery for post-MI cardiovascular repair. Adv Healthc Mater 2019;8(17):1900593. link1

[134] Bejleri D, Streeter BW, Nachlas ALY, Brown ME, Gaetani R, Christman KL, et al. A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Healthc Mater 2018;7(23):1800672. link1

[135] Song X, Wang X, Zhang J, Shen S, Yin W, Ye G, et al. A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction repair. Biomaterials 2021;273:120811. link1

[136] Song SY, Kim H, Yoo J, Kwon SP, Park BW, Kim J, et al. Prevascularized, multiple-layered cell sheets of direct cardiac reprogrammed cells for cardiac repair. Biomater Sci 2020;8(16):4508–20. link1

[137] Huang K, Ozpinar EW, Su T, Tang J, Shen D, Qiao L, et al. An off-the-shelf artificial cardiac patch improves cardiac repair after myocardial infarction in rats and pigs. Sci Transl Med 2020;12(538):eaat9683. link1

[138] Yang S, Wu F, Liu J, Fan G, Welsh W, Zhu H, et al. Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin. Adv Funct Mater 2015;25(29):4633–41. link1

[139] Whyte W, Roche ET, Varela CE, Mendez K, Islam S, O’Neill H, et al. Sustained release of targeted cardiac therapy with a replenishable implanted epicardial reservoir. Nat Biomed Eng 2018;2(6):416–28. link1

[140] Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol 2019;16(6):372–85. link1

[141] Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 doseescalation trial. Lancet 2015;385(9967):517–28. link1

[142] Abken H. Adoptive therapy with CAR redirected T cells: the challenges in targeting solid tumors. Immunotherapy 2015;7(5):535–44. link1

[143] Fu R, Li H, Li R, McGrath K, Dotti G, Gu Z. Delivery techniques for enhancing CAR T cell therapy against solid tumors. Adv Funct Mater 2021;31 (44):2009489. link1

[144] Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol 2015;33(1):97–101. link1

[145] Weiden J, Voerman D, Dölen Y, Das RK, van Duffelen A, Hammink R, et al. Injectable biomimetic hydrogels as tools for efficient T cell expansion and delivery. Front Immunol 2018;9:2798. link1

[146] Wang K, Chen Y, Ahn S, Zheng M, Landoni E, Dotti G, et al. GD2-specific CAR T cells encapsulated in an injectable hydrogel control retinoblastoma and preserve vision. Nat Can 2020;1(10):990–7. link1

[147] Hu Q, Li H, Archibong E, Chen Q, Ruan H, Ahn S, et al. Inhibition of postsurgery tumour recurrence via a hydrogel releasing CAR-T cells and antiPDL1-conjugated platelets. Nat Biomed Eng 2021;5(9):1038–47. link1

[148] Luo Z, Liu Z, Liang Z, Pan J, Xu J, Dong J, et al. Injectable porous microchips with oxygen reservoirs and an immune-niche enhance the efficacy of CAR T cell therapy in solid tumors. ACS Appl Mater Interfaces 2020;12 (51):56712–22. link1

[149] Hann SY, Cui H, Esworthy T, Miao S, Zhou X, Lee SJ, et al. Recent advances in 3D printing: vascular network for tissue and organ regeneration. Transl Res 2019;211:46–63. link1

[150] Cui H, Zhu W, Nowicki M, Zhou X, Khademhosseini A, Zhang LG. Hierarchical fabrication of engineered vascularized bone biphasic constructs via dual 3D bioprinting: integrating regional bioactive factors into architectural design. Adv Healthc Mater 2016;5(17):2174–81. link1

[151] Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 2016;110:45–59. link1

[152] Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019;364(6439):458–64. link1

[153] Brandhorst D, Brandhorst H, Mullooly N, Acreman S, Johnson PRV. High seeding density induces local hypoxia and triggers a proinflammatory response in isolated human islets. Cell Transplant 2016;25(8):1539–46. link1

[154] Cogger K, Nostro MC. Recent advances in cell replacement therapies for the treatment of type 1 diabetes. Endocrinology 2015;156 (1):8–15. link1

[155] Dulong JL, Legallais C. A theoretical study of oxygen transfer including cell necrosis for the design of a bioartificial pancreas. Biotechnol Bioeng 2007;96 (5):990–8. link1

Related Research