Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 15, Issue 8 doi: 10.1016/j.eng.2021.12.021

A Rigid Nanoplatform for Precise and Responsive Treatment of Intracellular Multidrug-Resistant Bacteria

a National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
b Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China

Received: 2022-07-13 Revised: 2021-09-26 Accepted: 2021-12-24 Available online: 2022-04-12

Next Previous

Abstract

Antibiotic treatment failure against life-threatening bacterial pathogens is typically caused by the rapid emergence and dissemination of antibiotic resistance. The current lack of antibiotic discovery and development urgently calls for new strategies to combat multidrug-resistant (MDR) bacteria, especially those that survive in host cells. Functional nanoparticles are promising intracellular drug delivery systems whose advantages include their high biocompatibility and tunable surface modifications. Inspired by the fact that the rigidity of nanoparticles potentiates their cellular uptake, rigidity-functionalized nanoparticles (RFNs) coated with bacteria-responsive phospholipids were fabricated to boost endocytosis, resulting in the increased accumulation of intracellular antibiotics. Precise delivery and high antibacterial efficacy were demonstrated by the clearing of 99% of MDR bacteria in 4 h using methicillin-resistant Staphylococcus aureus (MRSA) and pathogenic Bacillus cereus as models. In addition, the subcellular distribution of the RFNs was modulated by altering the phospholipid composition on the surface, thereby adjusting the electrostatic effects and reprograming the intracellular behavior of the RFNs by causing them to accurately target lysosomes. Finally, the RFNs showed high efficacy against MRSA-associated infections in animal models of wound healing and bacteremia. These findings provide a controllable rigidity-regulated delivery platform with responsive properties for precisely reprograming the accumulation of cytosolic antibiotics, shedding light on precision antimicrobial therapeutics against intracellular bacterial pathogens in the future.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

[ 1 ] Kupferschmidt K. Resistance fighters. Science 2016;352(6287):758–61. link1

[ 2 ] Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 2019;17(4):203–18. link1

[ 3 ] Liu J, Gefen O, Ronin I, Bar-Meir M, Balaban NQ. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 2020;367 (6474):200–4. link1

[ 4 ] Fridman O, Goldberg A, Ronin I, Shoresh N, Balaban NQ. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 2014;513(7518):418–21. link1

[ 5 ] Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, et al. A new antibiotic kills pathogens without detectable resistance. Nature 2015;517 (7535):455–9. link1

[ 6 ] Liu X, Liu F, Ding S, Shen J, Zhu K. Sublethal levels of antibiotics promote bacterial persistence in epithelial cells. Adv Sci 2020;7(18):1900840. link1

[ 7 ] Li Y, Liu F, Zhang J, Liu X, Xiao P, Bai H, et al. Efficient killing of multidrugresistant internalized bacteria by AIEgens in vivo. Adv Sci 2021;8(9):2001750. link1

[ 8 ] Yang ZQ, Huang YL, Zhou HW, Zhang R, Zhu K. Persistent carbapenem-resistant Klebsiella pneumoniae: a Trojan horse. Lancet Infect Dis 2018;18(1):22–3. link1

[ 9 ] Durand GA, Raoult D, Dubourg G. Antibiotic discovery: history, methods and perspectives. Int J Antimicrob Agents 2019;53(4):371–82. link1

[10] Lewis K. The science of antibiotic discovery. Cell 2020;181(1):29–45. link1

[11] Zeng X, Liu G, Tao W, Ma Y, Zhang X, He F, et al. A drug-self-gated mesoporous antitumor nanoplatform based on pH-sensitive dynamic covalent bond. Adv Funct Mater 2017;27(11):1605985. link1

[12] Hood RL, Andriani RT, Ecker TE, Robertson JL, Rylander CJ. Characterizing thermal augmentation of convection-enhanced drug delivery with the fiberoptic microneedle device. Engineering 2015;1(3):344–50. link1

[13] Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, et al. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 2019;13(8):8537–65. link1

[14] Sun J, Zhang L, Wang J, Feng Q, Liu D, Yin Q, et al. Tunable rigidity of (polymeric core)–(lipid shell) nanoparticles for regulated cellular uptake. Adv Mater 2015;27(8):1402–7. link1

[15] Hui Y, Yi X, Wibowo D, Yang G, Middelberg APJ, Gao H, et al. Nanoparticle elasticity regulates phagocytosis and cancer cell uptake. Sci Adv 2020;6(16): eaaz4316. link1

[16] Yang X, Qiu Q, Liu G, Ren H, Wang X, Lovell JF, et al. Traceless antibioticcrosslinked micelles for rapid clearance of intracellular bacteria. J Control Release 2022;341:329–40. link1

[17] Lin A, Liu Y, Zhu X, Chen Xu, Liu J, Zhou Y, et al. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition. ACS Nano 2019;13(12):13965–84. link1

[18] Hu CM, Fang RH, Copp J, Luk BT, Zhang L. A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 2013;8(5):336–40. link1

[19] Ye M, Zhao Yi, Wang Y, Zhao M, Yodsanit N, Xie R, et al. A dual-responsive antibiotic-loaded nanoparticle specifically binds pathogens and overcomes antimicrobial-resistant infections. Adv Mater 2021;33(9):2006772. link1

[20] Wu W, Yu L, Jiang Q, Huo M, Lin H, Wang L, et al. Enhanced tumor-specific disulfiram chemotherapy by in situ Cu2+ chelation-initiated nontoxicity-totoxicity transition. J Am Chem Soc 2019;141(29):11531–9. link1

[21] Peyrusson F, Varet H, Nguyen TK, Legendre R, Sismeiro O, Coppée JY, et al. Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat Commun 2020;11(1):2200. link1

[22] Xie Y, Liu Y, Yang J, Liu Y, Hu F, Zhu K, et al. Gold nanoclusters for targeting methicillin-resistant Staphylococcus aureus in vivo. Angew Chem Int Ed Engl 2018;57(15):3958–62. link1

[23] Guo P, Liu D, Subramanyam K, Wang B, Yang J, Huang J, et al. Nanoparticle elasticity directs tumor uptake. Nat Commun 2018;9(1):130. link1

[24] Hu D, Deng Y, Jia F, Jin Q, Ji J. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano 2020;14(1):347–59. link1

[25] Zhu G, Mock JN, Aljuffali I, Cummings BS, Arnold RD. Secretory phospholipase A2 responsive liposomes. J Pharm Sci 2011;100(8):3146–59. link1

[26] Cook AB, Decuzzi P. Harnessing endogenous stimuli for responsive materials in theranostics. ACS Nano 2021;15(2):2068–98. link1

[27] Iwasaki H, Shimada A, Yokoyama K, Ito E. Structure and glycosylation of lipoteichoic acids in Bacillus strains. J Bacteriol 1989;171(1):424–9. link1

[28] Ramírez-García PD, Retamal JS, Shenoy P, Imlach W, Sykes M, Truong N, et al. A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nat Nanotechnol 2019;14(12):1150–9. link1

[29] Berthold-Pluta A, Pluta A, Garbowska M. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract. Microb Pathog 2015;82:7–14. link1

[30] Brynildsen MP, Winkler JA, Spina CS, MacDonald IC, Collins JJ. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat Biotechnol 2013;31(2):160–5. link1

[31] Qu S, Liu Y, Hu Q, Han Y, Hao Z, Shen J, et al. Programmable antibiotic delivery to combat methicillin-resistant Staphylococcus aureus through precision therapy. J Control Release 2020;321:710–7. link1

[32] Morrisette T, Alosaimy S, Abdul-Mutakabbir JC, Kebriaei R, Rybak MJ. The evolving reduction of vancomycin and daptomycin susceptibility in MRSAsalvaging the gold standards with combination therapy. Antibiotics 2020;9 (11):762–82. link1

[33] Xi Y, Ge J, Guo Y, Lei B, Ma PX. Biomimetic elastomeric polypeptide-based nanofibrous matrix for overcoming multidrug-resistant bacteria and enhancing full-thickness wound healing/skin regeneration. ACS Nano 2018;12(11):10772–84. link1

[34] Schulz F, Horn M. Intranuclear bacteria: inside the cellular control center of eukaryotes. Trends Cell Biol 2015;25(6):339–46. link1

[35] Choy A, Dancourt J, Mugo B, O’Connor TJ, Isberg RR, Melia TJ, et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 2012;338(6110):1072–6. link1

[36] Garzoni C, Kelley WL. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol 2009;17(2):59–65. link1

[37] Labib M, Wang Z, Ahmed SU, Mohamadi RM, Duong B, Green B, et al. Tracking the expression of therapeutic protein targets in rare cells by antibodymediated nanoparticle labelling and magnetic sorting. Nat Biomed Eng 2021;5 (1):41–52. link1

[38] Pesce D, Wu Y, Kolbe A, Weil T, Herrmann A. Enhancing cellular uptake of GFP via unfolded supercharged protein tags. Biomaterials 2013;34(17):4360–7. link1

[39] Kankala RK, Han YH, Na J, Lee CH, Sun Z, Wang SB, et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv Mater 2020;32(23):1907035. link1

[40] Hajj KA, Ball RL, Deluty SB, Singh SR, Strelkova D, Knapp CM, et al. Branchedtail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH. Small 2019;15(6):1805097. link1

[41] Abumanhal-Masarweh H, da Silva D, Poley M, Zinger A, Goldman E, Krinsky N, et al. Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells. J Control Release 2019;307:331–41. link1

Related Research