Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 26, Issue 7 doi: 10.1016/j.eng.2023.03.013

Twelve Years of Genome-Wide Association Studies of Human Protein N-Glycosylation

a MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow 119991, Russia
b Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia

Received: 2022-10-12 Revised: 2023-03-22 Accepted: 2023-03-22 Available online: 2023-05-19

Next Previous

Abstract

Most human-secreted and membrane-bound proteins have covalently attached oligosaccharide chains, or glycans. Glycosylation influences the physical and chemical properties of proteins, as well as their biological functions. Unsurprisingly, alterations in protein glycosylation have been implicated in a growing number of human diseases, and glycans are increasingly being considered as potential therapeutic targets, an essential part of therapeutics, and biomarkers. Although glycosylation pathways are biochemically well-studied, little is known about the networks of genes that guide the cell- and tissue-specific regulation of these biochemical reactions in humans in vivo. The lack of a detailed understanding of the mechanisms regulating glycome variation and linking the glycome to human health and disease is slowing progress in clinical applications of human glycobiology. Two of the tools that can provide much sought-after knowledge of human in vivo glycobiology are human genetics and genomics, which offer a powerful data-driven agnostic approach for dissecting the biology of complex traits. This review summarizes the current state of human populational glycogenomics. In Section 1, we provide a brief overview of the N-glycan's structural organization, and in Section 2, we give a description of the major blood plasma glycoproteins. Next, in Section 3, we summarize, systemize, and generalize the results from current N-glycosylation genome-wide association studies (GWASs) that provide novel knowledge of the genetic regulation of the populational variation of glycosylation. Until now, such studies have been limited to an analysis of the human blood plasma N-glycome and the N-glycosylation of immunoglobulin G and transferrin. While these three glycomes make up a rather limited set compared with the enormous multitude of glycomes of different tissues and glycoproteins, the study of these three does allow for powerful analysis and generalization. Finally, in Section 4, we turn to genes in the established loci, paying particular attention to genes with strong support in Section 5. At the end of the review, in Sections 6 and 7, we describe special cases of interest in light of new discoveries, focusing on possible mechanisms of action and biological targets of genetic variation that have been implicated in human protein N-glycosylation.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

References

[ 1 ] Chauhan JS, Rao A, Raghava GPS. In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS One 2013;8(6):e67008. link1

[ 2 ] Clerc F, Reiding KR, Jansen BC, Kammeijer GSM, Bondt A, Wuhrer M. Human plasma protein N-glycosylation. Glycoconj J 2016;33(3):309–43. link1

[ 3 ] Knezevic´ A, Polasek O, Gornik O, Rudan I, Campbell H, Hayward C, et al. Variability, heritability and environmental determinants of human plasma Nglycome. J Proteome Res 2009;8(2):694–701. link1

[ 4 ] Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 2012;13(7):448–62. link1

[ 5 ] Lauc G, Vojta A, Zoldoš V. Epigenetic regulation of glycosylation is the quantum mechanics of biology. Biochim Biophys Acta 2014;1840(1):65–70. link1

[ 6 ] Hashimoto K, Goto S, Kawano S, Aoki-Kinoshita KF, Ueda N, Hamajima M, et al. KEGG as a glycome informatics resource. Glycobiology 2006;16 (5):63R–70R. link1

[ 7 ] Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol 2019;15(6):346–66. link1

[ 8 ] Lauc G, Trbojevic´ -Akmacˇic´ I. The role of glycosylation in health and disease. Berlin: Springer International Publishing; 2021. link1

[ 9 ] Dwek RA, Butters TD, Platt FM, Zitzmann N. Targeting glycosylation as a therapeutic approach. Nat Rev Drug Discov 2002;1(1):65–75. link1

[10] RodrÍguez E, Schetters STT, van Kooyk Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol 2018;18 (3):204–11. link1

[11] Pagan JD, Kitaoka M, Anthony RM. Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 2018;172(3). 564–77. e13. link1

[12] Johannssen T, Lepenies B. Glycan-based cell targeting to modulate immune responses. Trends Biotechnol 2017;35(4):334–46. link1

[13] Paderi J, Prestwich GD, Panitch A, Boone T, Stuart K. Glycan therapeutics: resurrecting an almost pharma-forgotten drug class. Adv Ther 2018;1 (8):1800082. link1

[14] Van Landuyt L, Lonigro C, Meuris L, Callewaert N. Customized protein glycosylation to improve biopharmaceutical function and targeting. Curr Opin Biotechnol 2019;60:17–28. link1

[15] Adamczyk B, Tharmalingam T, Rudd PM. Glycans as cancer biomarkers. Biochim Biophys Acta 2012;1820(9):1347–53. link1

[16] Thanabalasingham G, Huffman JE, Kattla JJ, Novokmet M, Rudan I, Gloyn AL, et al. Mutations in HNF1A result in marked alterations of plasma glycan profile. Diabetes 2013;62(4):1329–37. link1

[17] Shinohara Y, Furukawa JI, Miura Y. Glycome as biomarkers. In: General methods in biomarker research and their applications. Dordrecht: Springer Netherlands; 2015. p. 111–40.

[18] Wang W. Glycomedicine: the current state of the art. Engineering. In press.

[19] Henrissat B, Surolia A, Stanley P. A genomic view of glycobiology. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, editors. Essentials of glycobiology. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2017. link1

[20] Van Helden P. Data-driven hypotheses. EMBO Rep 2013;14(2):104. link1

[21] Krištic´ J, Sharapov SZ, Aulchenko YS. Quantitative genetics of human protein N-glycosylation. In: Lauc G, Trbojevic´ -Akmacˇic´ I, editors. The role of glycosylation in health and disease. Springer; 2021. p. 151–71.

[22] De Haan N, Pucˇic´ -Bakovic´ M, Novokmet M, Falck D, Lageveen-Kammeijer G, Razdorov G, et al. Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples. Glycobiology 2022;32(8):651–63. link1

[23] Landini A, Trbojevic´ -Akmacˇic´ I, Navarro P, Tsepilov YA, Sharapov SZ, Vucˇkovic´ F, et al. Genetic regulation of post-translational modification of two distinct proteins. Nat Commun 2022;13(1):1586. link1

[24] Momcˇilovic´ A, de Haan N, Hipgrave Ederveen AL, Bondt A, Koeleman CAM, Falck D, et al. Simultaneous immunoglobulin A and G glycopeptide profiling for high-throughput applications. Anal Chem 2020;92(6):4518–26. link1

[25] Dotz V, Visconti A, Lomax-Browne HJ, Clerc F, Hipgrave Ederveen AL, Medjeral-Thomas NR, et al. O- and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function. J Am Soc Nephrol 2021;32(10):2455–65. link1

[26] Demus D, Naber A, Dotz V, Jansen BC, Bladergroen MR, Nouta J, et al. Largescale analysis of apolipoprotein CIII glycosylation by ultrahigh resolution mass spectrometry. Front Chem 2021;9:678883. link1

[27] Frkatovic A, Zaytseva OO, Klaric L. Genetic regulation of immunoglobulin G glycosylation. Exp Suppl 2021;112:259–87. link1

[28] Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014;5:520. link1

[29] Gudelj I, Lauc G, Pezer M. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol 2018;333:65–79. link1

[30] Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science 2015;347(6220):1260419. link1

[31] Uhlén M, Karlsson MJ, Hober A, Svensson AS, Scheffel J, Kotol D, et al. The human secretome. Sci Signal 2019;12(609):eaaz0274. link1

[32] Bondt A, Selman MHJ, Deelder AM, Hazes JMW, Willemsen SP, Wuhrer M, et al. Association between galactosylation of immunoglobulin G and improvement of rheumatoid arthritis during pregnancy is independent of sialylation. J Proteome Res 2013;12(10):4522–31. link1

[33] Parekh R, Roitt I, Isenberg D, Dwek R, Rademacher T. Age-related galactosylation of the N-linked oligosaccharides of human serum IgG. J Exp Med 1988;167(5):1731–6. link1

[34] Ruhaak LR, Uh HW, Beekman M, Koeleman CAM, Hokke CH, Westendorp RGJ, et al. Decreased levels of bisecting GlcNAc glycoforms of IgG are associated with human longevity. PLoS One 2010;5(9):e12566. link1

[35] Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcc RIII and antibody-dependent cellular toxicity. J Biol Chem 2002;277 (30):26733–40. link1

[36] Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P, Waldhauer I, et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FccRIII and antibodies lacking core fucose. Proc Natl Acad Sci USA 2011;108(31):12669–74. link1

[37] Van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y. The emerging importance of IgG Fab glycosylation in immunity. J Immunol 2016;196 (4):1435–41. link1

[38] McClain DA, Sharma NK, Jain S, Harrison A, Salaye LN, Comeau ME, et al. Adipose tissue transferrin and insulin resistance. J Clin Endocrinol Metab 2018;103(11):4197–208. link1

[39] Spik G, Bayard B, Fournet B, Strecker G, Bouquelet S, Montreuil J, et al. Complete structure of two carbohydrate units of human serotransferrin. FEBS Lett 1975;50(3):296–9. link1

[40] Karlsson I, Ndreu L, Quaranta A, Thorsén G. Glycosylation patterns of selected proteins in individual serum and cerebrospinal fluid samples. J Pharm Biomed Anal 2017;145:431–9. link1

[41] Kutalik Z, Benyamin B, Bergmann S, Mooser V, Waeber G, Montgomery GW, et al. Genome-wide association study identifies two loci strongly affecting transferrin glycosylation. Hum Mol Genet 2011;20(18):3710–7. link1

[42] Rose RJ, van Berkel PHC, van den Bremer ETJ, Labrijn AF, Vink T, Schuurman J, et al. Mutation of Y407 in the CH3 domain dramatically alters glycosylation and structure of human IgG. MAbs 2013;5(2):219–28. link1

[43] Huffman JE, Pucˇic´ -Bakovic´ M, Klaric´ L, Hennig R, Selman MHJ, Vucˇkovic´ F, et al. Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Mol Cell Proteomics 2014;13(6):1598–610. link1

[44] Reiding KR, Bondt A, Hennig R, Gardner RA, O’Flaherty R, Trbojevic´ -Akmacˇic´ I, et al. High-throughput serum N-glycomics: method comparison and application to study rheumatoid arthritis and pregnancy-associated changes. Mol Cell Proteomics 2019;18(1):3–15. link1

[45] Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLOS Comput Biol 2012;8(12):e1002822. link1

[46] Kraft P, Zeggini E, Ioannidis JPA. Replication in genome-wide association studies. Stat Sci 2009;24(4):561–73. link1

[47] Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gómez-Marín C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 2014;507(7492):371–5. link1

[48] Lauc G, Huffman JE, Pucˇic´ M, Zgaga L, Adamczyk B, Muzˇinic´ A, et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet 2013;9(1):e1003225. link1

[49] Shen X, Klaric´ L, Sharapov S, Mangino M, Ning Z, Wu D, et al. Multivariate discovery and replication of five novel loci associated with immunoglobulin G N-glycosylation. Nat Commun 2017;8(1):447. link1

[50] Wahl A, van den Akker E, Klaric L, Štambuk J, Benedetti E, Plomp R, et al. Genome-wide association study on immunoglobulin G glycosylation patterns. Front Immunol 2018;9:277. link1

[51] Klaric´ L, Tsepilov YA, Stanton CM, Mangino M, Sikka TT, Esko T, et al. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Sci Adv 2020;6(8):eaax0301. link1

[52] Shadrina AS, Zlobin AS, Zaytseva OO, Klaric´ L, Sharapov SZ, Pakhomov D, et al. Multivariate genome-wide analysis of immunoglobulin G N-glycosylation identifies new loci pleiotropic with immune function. Hum Mol Genet 2021;30(13):1259–70. link1

[53] Ning Z, Tsepilov YA, Sharapov SZ, Wang Z, Grishenko AK, Feng X, et al. Nontrivial replication of loci detected by multi-trait methods. Front Genet 2021;12:627989. link1

[54] Lauc G, Essafi A, Huffman JE, Hayward C, Knezˇevic´ A, Kattla JJ, et al. Genomics meets glycomics-the first GWAS study of human N-glycome identifies HNF1a as a master regulator of plasma protein fucosylation. PLoS Genet 2010;6(12): e1001256. link1

[55] Huffman JE, Knezevic A, Vitart V, Kattla J, Adamczyk B, Novokmet M, et al. Polymorphisms in B3GAT1, SLC9A9 and MGAT5 are associated with variation within the human plasma N-glycome of 3533 European adults. Hum Mol Genet 2011;20(24):5000–11. link1

[56] Sharapov SZ, Tsepilov YA, Klaric L, Mangino M, Thareja G, Shadrina AS, et al. Defining the genetic control of human blood plasma N-glycome using genome-wide association study. Hum Mol Genet 2019;28(12):2062–77. link1

[57] Sharapov SZ, Shadrina AS, Tsepilov YA, Elgaeva EE, Tiys ES, Feoktistova SG, et al. Replication of fifteen loci involved in human plasma protein Nglycosylation in 4,802 samples from four cohorts. Glycobiology 2020;31 (2):82–8. link1

[58] Benedetti E, Pucˇic´ -Bakovic´ M, Keser T, Wahl A, Hassinen A, Yang JY, et al. Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nat Commun 2017;8(1):1483. link1

[59] Tsepilov YA, Sharapov SZ, Zaytseva OO, Krumsiek J, Prehn C, Adamski J, et al. A network-based conditional genetic association analysis of the human metabolome. Gigascience 2018;7(12):giy137. link1

[60] Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet 2012;90(1):7–24. link1

[61] Canela-Xandri O, Rawlik K, Tenesa A. An atlas of genetic associations in UK Biobank. Nat Genet 2018;50(11):1593–9. link1

[62] Li X, Wang H, Zhu Y, Cao W, Song M, Wang Y, et al. Heritability enrichment of immunoglobulin G N-glycosylation in specific tissues. Front Immunol 2021;12:741705. link1

[63] Huang H, Fang M, Jostins L, Umic´evic´ Mirkov M, Boucher G, Anderson CA, et al.; IIBDGC. Fine-mapping inflammatory bowel disease loci to singlevariant resolution. Nature 2017;547(7662):173–8.

[64] Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet 2018;19 (8):491–504. link1

[65] Gamazon ER, Segrè AV, van de Bunt M, Wen X, Xi HS, Hormozdiari F, et al.; GTEx Consortium. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat Genet 2018;50 (7):956–67.

[66] Dekker J, Misteli T. Long-range chromatin interactions. Cold Spring Harb Perspect Biol 2015;7(10):a019356. link1

[67] Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021;22(2):96–118. link1

[68] McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol 2016;17(1):122. link1

[69] Rogers MF, Shihab HA, Mort M, Cooper DN, Gaunt TR, Campbell C. FATHMMXF: accurate prediction of pathogenic point mutations via extended features. Bioinformatics 2018;34(3):511–3. link1

[70] Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J, et al.; ENCODE Project Consortium. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 2020;583(7818):699–710.

[71] Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al.; Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature 2015;518(7539):317–30.

[72] Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, et al.; MuTHER Consortium. An atlas of genetic influences on human blood metabolites. Nat Genet 2014;46(6):543–50.

[73] Battle A, Brown CD, Engelhardt BE, Montgomery SB; GTEx Consortium, LDACC—Analysis Working Group, Statistical Methods groups—Analysis Working Group, eGTEx groups, NIH Common Fund, NIH/NCI, NIH/NHGRI, NIH/NIMH, NIH/NIDA, Biospecimen Collection Source Site—NDRI, Biospecimen Collection Source Site—RPCI, Biospecimen Core Resource— VARI, Brain Bank Repository—University of Miami Brain Endowment Bank, Leidos Biomedical—Project Management, ELSI Study, Genome Browser Data Integration &Visualization—EBI, Genome Browser Data Integration &Visualization—UCSC Genomics Institute, University of California Santa Cruz, Lead Analysts, LDACC, NIH Program Management, Biospecimen Collection, Pathology, eQTL Manuscript Working Group. Genetic effects on gene expression across human tissues. Nature 2017;550(7675):204–213.

[74] Momozawa Y, Dmitrieva J, Théâtre E, Deffontaine V, Rahmouni S, Charloteaux B, et al.; IIBDGC. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat Commun 2018;9(1):2427.

[75] Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, et al. Genomic atlas of the human plasma proteome. Nature 2018;558(7708):73–9. link1

[76] Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, Styrmisdottir EL, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet 2021;53(12):1712–21. link1

[77] Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 2014;10(5):e1004383. link1

[78] Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 2016;48(5):481–7. link1

[79] Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun 2017;8 (1):1826. link1

[80] Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MRbase platform supports systematic causal inference across the human phenome. eLife 2018;7:e34408. link1

[81] Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotypephenotype associations. Bioinformatics 2019;35(22):4851–3. link1

[82] Shashkova TI, Gorev DD, Pakhomov ED, Shadrina AS, Sharapov SZ, Tsepilov YA, et al. The GWAS-MAP platform for aggregation of results of genome-wide association studies and the GWAS-MAP|homo database of 70 billion genetic associations of human traits. Vavilovskii Zhurnal Genet Selektsii 2020;24 (8):876–84. link1

[83] Shashkova TI, Pakhomov ED, Gorev DD, Karssen LC, Joshi PK, Aulchenko YS. PheLiGe: an interactive database of billions of human genotype-phenotype associations. Nucleic Acids Res 2021;49(D1):D1347–50. link1

[84] Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, et al. Massive mining of publicly available RNA-seq data from human and mouse. Nat Commun 2018;9(1):1366. link1

[85] Zhang Z, Shah B, Richardson J. Impact of Fc N-glycan sialylation on IgG structure. MAbs 2019;11(8):1381–90. link1

[86] Niebuhr B, Kriebitzsch N, Fischer M, Behrens K, Günther T, Alawi M, et al. Runx1 is essential at two stages of early murine B-cell development. Blood 2013;122(3):413–23. link1

[87] Sellars M, Reina-San-Martin B, Kastner P, Chan S. Ikaros controls isotype selection during immunoglobulin class switch recombination. J Exp Med 2009;206(5):1073–87. link1

[88] Wang JH, Avitahl N, Cariappa A, Friedrich C, Ikeda T, Renold A, et al. Aiolos regulates B cell activation and maturation to effector state. Immunity 1998;9 (4):543–53. link1

[89] Brescia P, Schneider C, Holmes AB, Shen Q, Hussein S, Pasqualucci L, et al. MEF2B instructs germinal center development and acts as an oncogene in B cell lymphomagenesis. Cancer Cell 2018;34(3). 453–65.e9. link1

[90] Micol JB, Pastore A, Inoue D, Duployez N, Kim E, Lee SCW, et al. ASXL2 is essential for haematopoiesis and acts as a haploinsufficient tumour suppressor in leukemia. Nat Commun 2017;8(1):15429. link1

[91] Martincic K, Alkan SA, Cheatle A, Borghesi L, Milcarek C. Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing. Nat Immunol 2009;10(10):1102–9. link1

[92] Von Bülow GU, Bram RJ. NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily. Science 1997;278 (5335):138–41. link1

[93] Castigli E, Wilson SA, Elkhal A, Ozcan E, Garibyan L, Geha RS. Transmembrane activator and calcium modulator and cyclophilin ligand interactor enhances CD40-driven plasma cell differentiation. J Allergy Clin Immunol 2007;120 (4):885–91. link1

[94] Ozcan E, Garibyan L, Lee JJY, Bram RJ, Lam KP, Geha RS. Transmembrane activator, calcium modulator, and cyclophilin ligand interactor drives plasma cell differentiation in LPS-activated B cells. J Allergy Clin Immunol 2009;123 (6). 1277–86.e5. link1

[95] Rosnet O, Blanco-Betancourt C, Grivel K, Richter K, Schiff C. Binding of free immunoglobulin light chains to VpreB3 inhibits their maturation and secretion in chicken B cells. J Biol Chem 2004;279(11):10228–36. link1

[96] Ramachandran S, Chahwan R, Nepal RM, Frieder D, Panier S, Roa S, et al. The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination. Proc Natl Acad Sci USA 2010;107(2):809–14. link1

[97] Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000;100 (6):655–69. link1

[98] Nakayama T, Kimura MY. Memory Th1/Th2 cell generation controlled by Schnurri-2. Adv Exp Med Biol 2010;684:1–10. link1

[99] Staton TL, Lazarevic V, Jones DC, Lanser AJ, Takagi T, Ishii S, et al. Dampening of death pathways by Schnurri-2 is essential for T-cell development. Nature 2011;472(7341):105–9. link1

[100] Cheah IK, Halliwell B. Ergothioneine, recent developments. Redox Biol 2021;42:101868. link1

[101] Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016;535 (7610):111–6. link1

[102] Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 2020;368(6494):eaaz7548. link1

[103] Carreras-Sureda A, Cantero-Recasens G, Rubio-Moscardo F, Kiefer K, Peinelt C, Niemeyer BA, et al. ORMDL3 modulates store-operated calcium entry and lymphocyte activation. Hum Mol Genet 2013;22(3):519–30. link1

[104] Voss M, Künzel U, Higel F, Kuhn PH, Colombo A, Fukumori A, et al. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation. EMBO J 2014;33(24):2890–905. link1

[105] Hirst J, Barlow LD, Francisco GC, Sahlender DA, Seaman MNJ, Dacks JB, et al. The fifth adaptor protein complex. PLoS Biol 2011;9(10):e1001170. link1

[106] Hirst J, Itzhak DN, Antrobus R, Borner GHH, Robinson MS. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval. PLoS Biol 2018;16(1):e2004411. link1

[107] Papadopoulou AA, Müller SA, Mentrup T, Shmueli MD, Niemeyer J, HaugKröper M, et al. Signal peptide peptidase-like 2c impairs vesicular transport and cleaves SNARE proteins. EMBO Rep 2019;20(3):e46451. link1

[108] Mijakovac A, Miškec K, Krištic´ J, Vicˇic´ Bocˇkor V, Tadic´ V, Boškovic´ M, et al. A transient expression system with stably integrated CRISPR-dCas9 fusions for regulation of genes involved in immunoglobulin G glycosylation. CRISPR J 2022;5(2):237–53. link1

[109] Mijakovac A, Juric´ J, Kohrt WM, Krištic´ J, Kifer D, Gavin KM, et al. Effects of estradiol on immunoglobulin G glycosylation: mapping of the downstream signaling mechanism. Front Immunol 2021;12:680227. link1

[110] Kalimuthu SN, Chetty R. Gene of the month: SMARCB1. J Clin Pathol 2016;69 (6):484–9. link1

[111] Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al.; gonmAD Consortium. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020;581(7809):434–443.

[112] Mollicone R, Reguigne I, Fletcher A, Aziz A, Rustam M, Weston BW, et al. Molecular basis for plasma alpha(1,3)-fucosyltransferase gene deficiency (FUT6). J Biol Chem 1994;269(17):12662–71. link1

[113] Brinkman-van der Linden ECM, Mollicone R, Oriol R, Larson G, van den Eijnden DH, van Dijk W. A missense mutation in the FUT6 gene results in total absence of a3-fucosylation of human a1-acid glycoprotein. J Biol Chem 1996;271(24):14492–5. link1

[114] Puan KJ, San Luis B, Yusof N, Kumar D, Andiappan AK, Lee W, et al.; 23andMe Research Team. FUT6 deficiency compromises basophil function by selectively abrogating their sialyl-Lewis x expression. Commun Biol 2021;4 (1):832.

[115] Oka S, Terayama K, Kawashima C, Kawasaki T. A novel glucuronyltransferase in nervous system presumably associated with the biosynthesis of HNK-1 carbohydrate epitope on glycoproteins. J Biol Chem 1992;267(32):22711–4. link1

[116] Mitsumoto Y, Oka S, Sakuma H, Inazawa J, Kawasaki T. Cloning and chromosomal mapping of human glucuronyltransferase involved in biosynthesis of the HNK-1 carbohydrate epitope. Genomics 2000;65 (2):166–73. link1

[117] Juszczak A, Pavic´ T, Vucˇkovic´ F, Bennett AJ, Shah N, Pape Medvidovic´ E, et al. Plasma fucosylated glycans and C-reactive protein as biomarkers of HNF1AMODY in young adult-onset nonautoimmune diabetes. Diabetes Care 2019;42(1):17–26. link1

[118] Demus D, Urbanowicz PA, Gardner RA, Wu H, Juszczak A, Štambuk T, et al. Development of an exoglycosidase plate-based assay for detecting a1-3,4 fucosylation biomarker in individuals with HNF1A-MODY. Glycobiology 2022;32(3):230–8. link1

[119] Kuehn HS, Boisson B, Cunningham-Rundles C, Reichenbach J, Stray-Pedersen A, Gelfand EW, et al. Loss of B cells in patients with heterozygous mutations in IKAROS. N Engl J Med 2016;374(11):1032–43. link1

[120] Yamashita M, Kuehn HS, Okuyama K, Okada S, Inoue Y, Mitsuiki N, et al. A variant in human AIOLOS impairs adaptive immunity by interfering with IKAROS. Nat Immunol 2021;22(7):893–903. link1

[121] Woolf E, Brenner O, Goldenberg D, Levanon D, Groner Y. Runx3 regulates dendritic epidermal T cell development. Dev Biol 2007;303(2):703–14. link1

[122] Michaud J, Wu F, Osato M, Cottles GM, Yanagida M, Asou N, et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood 2002;99(4):1364–72. link1

[123] Janzi M, Melén E, Kull I, Wickman M, Hammarström L. Rare mutations in TNFRSF13B increase the risk of asthma symptoms in Swedish children. Genes Immun 2012;13(1):59–65. link1

[124] Liao M, Ye F, Zhang B, Huang L, Xiao Q, Qin M, et al. Genome-wide association study identifies common variants at TNFRSF13B associated with IgG level in a healthy Chinese male population. Genes Immun 2012;13(6):509–13. link1

[125] Jonsson S, Sveinbjornsson G, de Lapuente Portilla AL, Swaminathan B, Plomp R, Dekkers G, et al. Identification of sequence variants influencing immunoglobulin levels. Nat Genet 2017;49(8):1182–91. link1

[126] Castigli E, Wilson S, Garibyan L, Rachid R, Bonilla F, Schneider L, et al. Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet 2007;39(4):430–1. link1

[127] Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 2009;136(3):420–34. link1

[128] Benyamin B, McRae AF, Zhu G, Gordon S, Henders AK, Palotie A, et al. Variants in TF and HFE explain approximately 40% of genetic variation in serumtransferrin levels. Am J Hum Genet 2009;84(1):60–5. link1

[129] Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat Genet 2020;52(10):1122–31. link1

[130] Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 2010;53(12):2504–8. link1

[131] Demus D, Jansen BC, Gardner RA, Urbanowicz PA, Wu H, Štambuk T, et al. Interlaboratory evaluation of plasma N-glycan antennary fucosylation as a clinical biomarker for HNF1A-MODY using liquid chromatography methods. Glycoconj J 2021;38(3):375–86. link1

[132] Stein MM, Thompson EE, Schoettler N, Helling BA, Magnaye KM, Stanhope C, et al. A decade of research on the 17q12-21 asthma locus: piecing together the puzzle. J Allergy Clin Immunol 2018;142(3):749-64.e3. link1

[133] Christou MA, Ntritsos G, Markozannes G, Koskeridis F, Nikas SN, Karasik D, et al. A genome-wide scan for pleiotropy between bone mineral density and nonbone phenotypes. Bone Res 2020;8(1):26. link1

[134] Davies NM, Holmes MV, Davey SG. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 2018;362:k601. link1

[135] Hewing B, Moore KJ, Fisher EA. HDL and cardiovascular risk: time to call the plumber? Circ Res 2012;111(9):1117–20. link1

[136] Wang B, Liu D, Song M, Wang W, Guo B, Wang Y. Immunoglobulin G Nglycan, inflammation and type 2 diabetes in East Asian and European populations: a Mendelian randomization study. Mol Med 2022;28(1):114. link1

[137] Zaytseva OO, Sharapov SZ, Perola M, Esko T, Landini A, Hayward C, et al. Investigation of the causal relationships between human IgG N-glycosylation and 12 common diseases associated with changes in the IgG N-glycome. Hum Mol Genet 2022;31(10):1545–59. link1

[138] Liu D, Zhu J, Zhao T, Sharapov S, Tiys E, Wu L. Associations between genetically predicted plasma N-glycans and prostate cancer risk: analysis of over 140,000 European descendants. Pharm Genomics Pers Med 2021;14:1211–20. link1

[139] Umaña P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibodydependent cellular cytotoxic activity. Nat Biotechnol 1999;17(2):176–80. link1

[140] Vucˇkovic´ F, Krištic´ J, Gudelj I, Teruel M, Keser T, Pezer M, et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol 2015;67(11):2978–89. link1

[141] Ikeda Y, Ihara H, Tsukamoto H, Gu J, Taniguchi N. Mannosyl(b-1,4-)- glycoprotein b-1,4-N-acetylglucosaminyltransferase (MGAT3); b1,4-Nacetylglucosaminyltransferase III (GnT-III, GlcNAcT-III). In: Handbook of glycosyltransferases and related genes. Tokyo: Springer Japan; 2014. p. 209– 22.

[142] Rudman N, Gornik O, Lauc G. Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett 2019;593(13):1598–615. link1

[143] Novokmet M, Lukic´ E, Vucˇkovic´ F, Ðuric´ Zˇ, Keser T, Rajšl K, et al. Changes in IgG and total plasma protein glycomes in acute systemic inflammation. Sci Rep 2014;4(1):4347. link1

[144] Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 2011;40(3):755–64. link1

[145] Dotz V, Wuhrer M. N-glycome signatures in human plasma: associations with physiology and major diseases. FEBS Lett 2019;593(21):2966–76. link1

[146] Dworkin LA, Clausen H, Joshi HJ. Applying transcriptomics to study glycosylation at the cell type level. iScience 2022;25(6):104419. link1

Related Research