Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Information Technology & Electronic Engineering >> 2022, Volume 23, Issue 2 doi: 10.1631/FITEE.2000404

A large-current, highly integrated switched-capacitor divider with a dual-branch interleaved topology and light load efficiency improvement

Affiliation(s): College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; less

Received: 2020-08-11 Accepted: 2022-02-28 Available online: 2022-02-28

Next Previous

Abstract

Because it is magnet-free and can achieve a high integration level, the switched-capacitor (SC) converter acting as a direct current transformer has many promising applications in modern electronics. However, designing an SC converter with large current capability and high power efficiency is still challenging. This paper proposes a dual-branch SC voltage divider and presents its (IC) implementation. The designed SC converter is capable of driving large current load, thus widening the use of SC converters to high-power applications. This SC converter has a constant conversion ratio of 1/2 and its dual-branch interleaved operation ensures a continuous input current. An effective on-chip gate-driving method using a capacitively coupled floating-voltage level shifter is proposed to drive the all-NMOS power train. Due to the self-powered structure, the flying capacitor itself is also a bootstrap capacitor for gate driving and thus reduces the number of needed components. A digital frequency modulation method is adopted and the switching frequency decreases automatically at light load to improve light load efficiency. The converter IC is implemented using a 180 nm triple-well BCD process. Experimental results verify the effectiveness of the dual-branch interleaved operation and the self-powered gate-driving method. The proposed SC divider can drive up to 4 A load current with 5–12 V input voltage and its power efficiency is as high as 96.5%. At light load, using the proposed optimization method, the power efficiency is improved by 30%.

Related Research