Sign in

Paper Video Conference

Subscribe Submit

  • Home
  • Journals
  • Focus
  • Videos
  • Achievement
  • Fronts
  • Contact Us
Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

2014, Volume 9, Issue 3

Outline

Abstract

Keywords

Frontiers of Mechanical Engineering >> 2014, Volume 9, Issue 3 doi: 10.1007/s11465-014-0310-1

Improved analytical model for residual stress prediction in orthogonal cutting

Show More

Department of Mechanical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China

Available online:2014-10-10

Abstract

The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann’s model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volume-constancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann’s model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann’s model.

Keywords

residual stress ; analytical model ; orthogonal cutting ; cutting force ; cutting temperature

Content

Website Copyright © 2015 China Engineering Science Press Co., Ltd.

京公网安备 11010502051620号 京ICP备11030251号-2

关注我们

Follow us
Website Copyright © 2015 China Engineering Science Press Co., Ltd.
京公网安备 11010502051620号 京ICP备11030251号-2