2017-08-20 , Volume 3 Issue 4

Cover illustration

  •  

    Energy is vital to any modern economy because it underpins human wellbeing and economic productivity. In recent years, a great deal of engineering research has focused on designing low-carbon, or “clean,” energy systems. A clean energy future will grant the rising global population access to reliable, affordable, and sustainable energy services without contributing to climate change. Transitioning our fuel mix away from coal and oil and toward natural gas and renewable energy will take time, as the energy industry progresses through a period of profound change. Effective government policies and considerable technological progress are being made in the transition from fossil fuels to ecologically sustainable energy systems, such that many studies support future energy systems based on 100% renewable energy.

    Download cover

  • Select all
    Editorial
  • Editorial
    Clean Energy: Opportunities and Challenges
    [Author(id=1166060688595674004, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833305988260159, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060688725697430, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833305988260159, authorId=1166060688595674004, language=EN, stringName=Yuzhuo Zhang, firstName=Yuzhuo, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Shenhua Group Corporation Limited, Beijing 100011, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060688834749335, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833305988260159, authorId=1166060688595674004, language=CN, stringName=张玉卓, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Shenhua Group Corporation Limited, Beijing 100011, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yuzhuo Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Editorial
    Challenges in the Mining and Utilization of Deep Mineral Resources
    [Author(id=1166060918133154413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833310220312900, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060918267372143, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833310220312900, authorId=1166060918133154413, language=EN, stringName=Meifeng Cai, firstName=Meifeng, middleName=null, lastName=Cai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060918368035440, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833310220312900, authorId=1166060918133154413, language=CN, stringName=蔡美峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060918472893042, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833310220312900, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060918640665205, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833310220312900, authorId=1166060918472893042, language=EN, stringName=Edwin T. Brown, firstName=Edwin T., middleName=null, lastName=Brown, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b  Golder Associates Pty. Ltd., Brisbane, QLD 4064, Australia
    The University of Queensland, Brisbane, QLD 4072, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060918741328502, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833310220312900, authorId=1166060918472893042, language=CN, stringName=Brown Edwin T., firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b  Golder Associates Pty. Ltd., Brisbane, QLD 4064, Australia
    The University of Queensland, Brisbane, QLD 4072, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Meifeng Cai , Edwin T. Brown

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • News & Highlights
    Third Global Grand Challenges Summit for Engineering
    [Author(id=1166060913464894041, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833578802570085, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060913603306075, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833578802570085, authorId=1166060913464894041, language=EN, stringName=Maggie Bartolomeo, firstName=Maggie, middleName=null, lastName=Bartolomeo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Media Associate, US National Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060913708163676, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833578802570085, authorId=1166060913464894041, language=CN, stringName=Bartolomeo Maggie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Media Associate, US National Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Maggie Bartolomeo

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • Topic Insights
    Contemporary Research in Energy Science and Engineering
    [Author(id=1166060904967234088, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833305761767742, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060905105646123, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833305761767742, authorId=1166060904967234088, language=EN, stringName=Chris Greig, firstName=Chris, middleName=null, lastName=Greig, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Professor, The University of Queensland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060905252446766, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833305761767742, authorId=1166060904967234088, language=CN, stringName=Greig Chris, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Professor, The University of Queensland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chris Greig

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research
    The Recent Technological Development of Intelligent Mining in China
    [Author(id=1166060372454204222, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832890630529087, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060372546478912, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832890630529087, authorId=1166060372454204222, language=EN, stringName=Jinhua Wang, firstName=Jinhua, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Coal Technology and Engineering Group, Beijing 100013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060372617782081, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832890630529087, authorId=1166060372454204222, language=CN, stringName=王金华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Coal Technology and Engineering Group, Beijing 100013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060372684890947, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832890630529087, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060372781359941, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832890630529087, authorId=1166060372684890947, language=EN, stringName=Zenghua Huang, firstName=Zenghua, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Coal Technology and Engineering Group, Beijing 100013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060372844274503, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832890630529087, authorId=1166060372684890947, language=CN, stringName=黄曾华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Coal Technology and Engineering Group, Beijing 100013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jinhua Wang , Zenghua Huang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2
    [Author(id=1166060956041274089, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060956141937387, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060956041274089, language=EN, stringName=Michael Powalla, firstName=Michael, middleName=null, lastName=Powalla, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060956225823468, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060956041274089, language=CN, stringName=Powalla Michael, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060956301320942, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060956410372848, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060956301320942, language=EN, stringName=Stefan Paetel, firstName=Stefan, middleName=null, lastName=Paetel, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060956485870321, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060956301320942, language=CN, stringName=Paetel Stefan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060956569756403, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060956674614005, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060956569756403, language=EN, stringName=Dimitrios Hariskos, firstName=Dimitrios, middleName=null, lastName=Hariskos, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060956754305782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060956569756403, language=CN, stringName=Hariskos Dimitrios, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060956829803256, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060956938855162, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060956829803256, language=EN, stringName=Roland Wuerz, firstName=Roland, middleName=null, lastName=Wuerz, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060957014352635, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060956829803256, language=CN, stringName=Wuerz Roland, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060957094044413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060957198902015, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060957094044413, language=EN, stringName=Friedrich Kessler, firstName=Friedrich, middleName=null, lastName=Kessler, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060957282788096, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060957094044413, language=CN, stringName=Kessler Friedrich, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060957358285570, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060957467337476, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060957358285570, language=EN, stringName=Peter Lechner, firstName=Peter, middleName=null, lastName=Lechner, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060957542834949, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060957358285570, language=CN, stringName=Lechner Peter, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060957626721031, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060957727384329, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060957626721031, language=EN, stringName=Wiltraud Wischmann, firstName=Wiltraud, middleName=null, lastName=Wischmann, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060957815464714, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060957626721031, language=CN, stringName=Wischmann Wiltraud, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060957916128012, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060958046151438, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060957916128012, language=EN, stringName=Theresa Magorian Friedlmeier, firstName=Theresa Magorian, middleName=null, lastName=Friedlmeier, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060958151009039, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833340075368819, authorId=1166060957916128012, language=CN, stringName=Magorian Friedlmeier Theresa, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Michael Powalla , Stefan Paetel , Dimitrios Hariskos , Roland Wuerz , Friedrich Kessler , Peter Lechner , Wiltraud Wischmann , Theresa Magorian Friedlmeier

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Review on Alkali Element Doping in Cu(In,Ga)Se2 Thin Films and Solar Cells
    [Author(id=1166061170961605597, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061171091629023, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061170961605597, language=EN, stringName=Yun Sun, firstName=Yun, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tianjin Key Laboratory of Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061171192292320, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061170961605597, language=CN, stringName=孙云, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tianjin Key Laboratory of Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061171292955618, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061171422979044, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061171292955618, language=EN, stringName=Shuping Lin, firstName=Shuping, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tianjin Key Laboratory of Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061171527836645, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061171292955618, language=CN, stringName=林舒平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tianjin Key Laboratory of Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061171624305639, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061171762717673, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061171624305639, language=EN, stringName=Wei Li, firstName=Wei, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Engineering Research Center of Nano-Structured Thin Film Solar Cell, Beijing 102211, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061171863380970, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061171624305639, language=CN, stringName=李伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Engineering Research Center of Nano-Structured Thin Film Solar Cell, Beijing 102211, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061171964044268, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061172098261998, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061171964044268, language=EN, stringName=Shiqing Cheng, firstName=Shiqing, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tianjin Key Laboratory of Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061172198925295, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061171964044268, language=CN, stringName=程世清, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tianjin Key Laboratory of Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061172299588593, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061172433806323, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061172299588593, language=EN, stringName=Yunxiang Zhang, firstName=Yunxiang, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tianjin Key Laboratory of Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061172534469620, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061172299588593, language=CN, stringName=张运祥, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tianjin Key Laboratory of Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061172639327222, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061172769350648, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061172639327222, language=EN, stringName=Yiming Liu, firstName=Yiming, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Mads Clausen Institute, University of Southern Denmark, Sønderborg 6400, Denmark, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061172865819641, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061172639327222, language=CN, stringName=刘一鸣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Mads Clausen Institute, University of Southern Denmark, Sønderborg 6400, Denmark, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061172970677243, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061173104894973, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061172970677243, language=EN, stringName=Wei Liu, firstName=Wei, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tianjin Key Laboratory of Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061173201363966, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833406240514467, authorId=1166061172970677243, language=CN, stringName=刘玮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tianjin Key Laboratory of Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yun Sun , Shuping Lin , Wei Li , Shiqing Cheng , Yunxiang Zhang , Yiming Liu , Wei Liu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    An Internet of Energy Things Based on Wireless LPWAN
    [Author(id=1166060325377335686, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832873001869356, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060325503164809, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832873001869356, authorId=1166060325377335686, language=EN, stringName=Yonghua Song, firstName=Yonghua, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b c, address=a . State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060325599633803, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832873001869356, authorId=1166060325377335686, language=CN, stringName=宋永华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b c, address=a . State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060325696102798, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832873001869356, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060325851292051, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832873001869356, authorId=1166060325696102798, language=EN, stringName=Jin Lin, firstName=Jin, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a . State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
    c . Center of Internet of Energy Things, Tsinghua-Sichuan Energy Internet Institution, Chengdu 610213, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060325947761045, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832873001869356, authorId=1166060325696102798, language=CN, stringName=林今, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a . State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
    c . Center of Internet of Energy Things, Tsinghua-Sichuan Energy Internet Institution, Chengdu 610213, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060326048424343, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832873001869356, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060326212002203, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832873001869356, authorId=1166060326048424343, language=EN, stringName=Ming Tang, firstName=Ming, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b . College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
    c . Center of Internet of Energy Things, Tsinghua-Sichuan Energy Internet Institution, Chengdu 610213, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060326312665501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832873001869356, authorId=1166060326048424343, language=CN, stringName=唐明, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b . College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
    c . Center of Internet of Energy Things, Tsinghua-Sichuan Energy Internet Institution, Chengdu 610213, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060326413328800, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832873001869356, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060326572712357, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832873001869356, authorId=1166060326413328800, language=EN, stringName=Shufeng Dong, firstName=Shufeng, middleName=null, lastName=Dong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b . College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
    c . Center of Internet of Energy Things, Tsinghua-Sichuan Energy Internet Institution, Chengdu 610213, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060326677569958, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832873001869356, authorId=1166060326413328800, language=CN, stringName=董树锋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b . College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
    c . Center of Internet of Energy Things, Tsinghua-Sichuan Energy Internet Institution, Chengdu 610213, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yonghua Song , Jin Lin , Ming Tang , Shufeng Dong

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts
    [Author(id=1166060663727645537, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832951003340947, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060663861863267, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832951003340947, authorId=1166060663727645537, language=EN, stringName=Jin-Xun Liu, firstName=Jin-Xun, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060663962526564, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832951003340947, authorId=1166060663727645537, language=CN, stringName=Liu Jin-Xun, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060664063189862, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832951003340947, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060664197407592, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832951003340947, authorId=1166060664063189862, language=EN, stringName=Peng Wang, firstName=Peng, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060664298070889, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832951003340947, authorId=1166060664063189862, language=CN, stringName=Wang Peng, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060664398734187, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832951003340947, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060664532951917, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832951003340947, authorId=1166060664398734187, language=EN, stringName=Wayne Xu, firstName=Wayne, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060664637809518, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832951003340947, authorId=1166060664398734187, language=CN, stringName=Xu Wayne, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060664738472816, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832951003340947, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060664868496242, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832951003340947, authorId=1166060664738472816, language=EN, stringName=Emiel J. M. Hensen, firstName=Emiel J. M., middleName=null, lastName=Hensen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060664973353843, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832951003340947, authorId=1166060664738472816, language=CN, stringName=Emiel J. M. Hensen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jin-Xun Liu , Peng Wang , Wayne Xu , Emiel J. M. Hensen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    CCS Research Development and Deployment in a Clean Energy Future: Lessons from Australia over the Past Two Decades
    [Author(id=1166061241966977159, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833598931035018, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061243107827849, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833598931035018, authorId=1166061241966977159, language=EN, stringName=Peter J. Cook, firstName=Peter J., middleName=null, lastName=Cook, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CO2CRC Ltd. & Peter Cook Centre for Carbon Capture and Storage Research, The University of Melbourne, Melbourne, VIC 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061243225268362, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833598931035018, authorId=1166061241966977159, language=CN, stringName=Cook Peter J., firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CO2CRC Ltd. & Peter Cook Centre for Carbon Capture and Storage Research, The University of Melbourne, Melbourne, VIC 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Peter J. Cook

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Development of CO2 Selective Poly(Ethylene Oxide)-Based Membranes: From Laboratory to Pilot Plant Scale
    [Author(id=1166060392452645846, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060392591057880, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060392452645846, language=EN, stringName=Torsten Brinkmann, firstName=Torsten, middleName=null, lastName=Brinkmann, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060392695915481, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060392452645846, language=CN, stringName=Brinkmann Torsten, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060392796578779, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060392934990813, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060392796578779, language=EN, stringName=Jelena Lillepärg, firstName=Jelena, middleName=null, lastName=Lillepärg, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060393048237022, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060392796578779, language=CN, stringName=Lillepärg Jelena, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060393153094624, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060393291506658, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060393153094624, language=EN, stringName=Heiko Notzke, firstName=Heiko, middleName=null, lastName=Notzke, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060393392169955, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060393153094624, language=CN, stringName=Notzke Heiko, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060393492833253, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060393631245287, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060393492833253, language=EN, stringName=Jan Pohlmann, firstName=Jan, middleName=null, lastName=Pohlmann, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060393731908584, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060393492833253, language=CN, stringName=Pohlmann Jan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060393832571882, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060393966789612, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060393832571882, language=EN, stringName=Sergey Shishatskiy, firstName=Sergey, middleName=null, lastName=Shishatskiy, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060394067452909, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060393832571882, language=CN, stringName=Shishatskiy Sergey, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060394168116207, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060394306528241, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060394168116207, language=EN, stringName=Jan Wind, firstName=Jan, middleName=null, lastName=Wind, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060394407191538, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060394168116207, language=CN, stringName=Wind Jan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060394520437748, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060394658849782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060394520437748, language=EN, stringName=Thorsten Wolff, firstName=Thorsten, middleName=null, lastName=Wolff, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060394759513079, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832895693054026, authorId=1166060394520437748, language=CN, stringName=Wolff Thorsten, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Torsten Brinkmann , Jelena Lillepärg , Heiko Notzke , Jan Pohlmann , Sergey Shishatskiy , Jan Wind , Thorsten Wolff

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    On Advanced Control Methods toward Power Capture and Load Mitigation in Wind Turbines
    [Author(id=1166060608576741992, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832958469202080, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060608715154026, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832958469202080, authorId=1166060608576741992, language=EN, stringName=Yuan Yuan, firstName=Yuan, middleName=null, lastName=Yuan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060608820011627, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832958469202080, authorId=1166060608576741992, language=CN, stringName=Yuan Yuan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060608924869229, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832958469202080, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060609063281263, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832958469202080, authorId=1166060608924869229, language=EN, stringName=Jiong Tang, firstName=Jiong, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060609163944560, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832958469202080, authorId=1166060608924869229, language=CN, stringName=Tang Jiong, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yuan Yuan , Jiong Tang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Flow-Induced Instabilities in Pump-Turbines in China
    [Author(id=1166060880975815127, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833393787625876, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060881114227164, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833393787625876, authorId=1166060880975815127, language=EN, stringName=Zhigang Zuo, firstName=Zhigang, middleName=null, lastName=Zuo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Hydro Science and Engineering, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060881223279070, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833393787625876, authorId=1166060880975815127, language=CN, stringName=左志钢, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Hydro Science and Engineering, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060881323942369, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833393787625876, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060881462354406, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833393787625876, authorId=1166060881323942369, language=EN, stringName=Shuhong Liu), firstName=Shuhong, middleName=null, lastName=Liu), prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Hydro Science and Engineering, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060881567212008, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833393787625876, authorId=1166060881323942369, language=CN, stringName=刘树红, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Hydro Science and Engineering, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Zhigang Zuo , Shuhong Liu)

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    An Empirical Study on China’s Energy Supply-and-Demand Model Considering Carbon Emission Peak Constraints in 2030
    [Author(id=1166060517505818840, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832881558249524, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060517644230874, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832881558249524, authorId=1166060517505818840, language=EN, stringName=Jinhang Chen, firstName=Jinhang, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Datang Corporation, Beijing 100033, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060517744894171, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832881558249524, authorId=1166060517505818840, language=CN, stringName=陈进行, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Datang Corporation, Beijing 100033, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jinhang Chen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Computational Tools for the Integrated Design of Advanced Nuclear Reactors
    [Author(id=1166060363730051822, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060363864269552, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, authorId=1166060363730051822, language=EN, stringName=Nicholas W. Touran, firstName=Nicholas W., middleName=null, lastName=Touran, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= TerraPower, LLC, Bellevue, WA 98005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060363964932850, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, authorId=1166060363730051822, language=CN, stringName=W. Touran Nicholas, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= TerraPower, LLC, Bellevue, WA 98005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060364069790452, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060364204008182, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, authorId=1166060364069790452, language=EN, stringName=John Gilleland, firstName=John, middleName=null, lastName=Gilleland, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= TerraPower, LLC, Bellevue, WA 98005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060364300477176, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, authorId=1166060364069790452, language=CN, stringName=Gilleland John, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= TerraPower, LLC, Bellevue, WA 98005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060364405334778, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060364573106940, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, authorId=1166060364405334778, language=EN, stringName=Graham T. Malmgren, firstName=Graham T., middleName=null, lastName=Malmgren, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= TerraPower, LLC, Bellevue, WA 98005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060364669575933, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, authorId=1166060364405334778, language=CN, stringName=T. Malmgren Graham, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= TerraPower, LLC, Bellevue, WA 98005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060364774433535, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060364904456962, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, authorId=1166060364774433535, language=EN, stringName=Charles Whitmer, firstName=Charles, middleName=null, lastName=Whitmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= TerraPower, LLC, Bellevue, WA 98005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060365005120260, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, authorId=1166060364774433535, language=CN, stringName=Whitmer Charles, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= TerraPower, LLC, Bellevue, WA 98005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060365105783558, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060365240001289, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, authorId=1166060365105783558, language=EN, stringName=William H. Gates III, firstName=William H. Gates, middleName=null, lastName=III, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= TerraPower, LLC, Bellevue, WA 98005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060365336470282, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832884825612343, authorId=1166060365105783558, language=CN, stringName=H. Gates III William, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= TerraPower, LLC, Bellevue, WA 98005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Nicholas W. Touran , John Gilleland , Graham T. Malmgren , Charles Whitmer , William H. Gates III

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Some Challenges of Deep Mining
    [Author(id=1166060477928366204, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833334887014762, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060478029029501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833334887014762, authorId=1166060477928366204, language=EN, stringName=Charles Fairhurst, firstName=Charles, middleName=null, lastName=Fairhurst, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060478129692798, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833334887014762, authorId=1166060477928366204, language=CN, stringName=Charles Fairhurst, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Charles Fairhurst

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Monitoring, Warning, and Control of Rockburst in Deep Metal Mines
    [Author(id=1166060880329892297, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060880497664460, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, authorId=1166060880329892297, language=EN, stringName=Xia-Ting Feng, firstName=Xia-Ting, middleName=null, lastName=Feng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China
    b  State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060880598327757, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, authorId=1166060880329892297, language=CN, stringName=冯夏庭, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China
    b  State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060880703185359, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060880833208786, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, authorId=1166060880703185359, language=EN, stringName=Jianpo Liu, firstName=Jianpo, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060880929677781, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, authorId=1166060880703185359, language=CN, stringName=刘建波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060881034535386, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060881164558813, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, authorId=1166060881034535386, language=EN, stringName=Bingrui Chen, firstName=Bingrui, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060881265222111, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, authorId=1166060881034535386, language=CN, stringName=陈炳睿, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060881365885412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060881495908839, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, authorId=1166060881365885412, language=EN, stringName=Yaxun Xiao, firstName=Yaxun, middleName=null, lastName=Xiao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060881596572137, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, authorId=1166060881365885412, language=CN, stringName=肖亚勋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060881697235435, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060881839841774, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, authorId=1166060881697235435, language=EN, stringName=Guangliang Feng, firstName=Guangliang, middleName=null, lastName=Feng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060881936310768, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, authorId=1166060881697235435, language=CN, stringName=冯光亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060882041168371, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060882175386102, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, authorId=1166060882041168371, language=EN, stringName=Fengpeng Zhang, firstName=Fengpeng, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060882280243704, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833369989144959, authorId=1166060882041168371, language=CN, stringName=Zhang Fengpeng, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xia-Ting Feng , Jianpo Liu , Bingrui Chen , Yaxun Xiao , Guangliang Feng , Fengpeng Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Opportunities and Challenges in Deep Mining: A Brief Review
    [Author(id=1166060720371721195, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060720463995885, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, authorId=1166060720371721195, language=EN, stringName=Pathegama G. Ranjith, firstName=Pathegama G., middleName=null, lastName=Ranjith, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060720531104750, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, authorId=1166060720371721195, language=CN, stringName=Ranjith Pathegama G., firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060720602407920, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060720690488306, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, authorId=1166060720602407920, language=EN, stringName=Jian Zhao, firstName=Jian, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060720761791475, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, authorId=1166060720602407920, language=CN, stringName=Zhao Jian, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060720828900341, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060720921175031, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, authorId=1166060720828900341, language=EN, stringName=Minghe Ju, firstName=Minghe, middleName=null, lastName=Ju, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060720996672504, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, authorId=1166060720828900341, language=CN, stringName=Ju Minghe, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060721067975674, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060721156056060, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, authorId=1166060721067975674, language=EN, stringName=Radhika V. S. De Silva, firstName=Radhika V. S. De, middleName=null, lastName=Silva, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060721227359229, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, authorId=1166060721067975674, language=CN, stringName=De Silva Radhika V. S., firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060721294468095, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060721382547456, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, authorId=1166060721294468095, language=EN, stringName=Tharaka D. Rathnaweera, firstName=Tharaka D., middleName=null, lastName=Rathnaweera, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060721453850625, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, authorId=1166060721294468095, language=CN, stringName=Rathnaweera Tharaka D., firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060721520959491, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060721613234181, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, authorId=1166060721520959491, language=EN, stringName=Adheesha K. M. S. Bandara, firstName=Adheesha K. M. S., middleName=null, lastName=Bandara, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060721680343046, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833318856384851, authorId=1166060721520959491, language=CN, stringName=Bandara Adheesha K. M. S., firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Pathegama G. Ranjith , Jian Zhao , Minghe Ju , Radhika V. S. De Silva , Tharaka D. Rathnaweera , Adheesha K. M. S. Bandara

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    The Use of Data Mining Techniques in Rockburst Risk Assessment
    [Author(id=1166060592294453735, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832916542939250, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060592462225899, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832916542939250, authorId=1166060592294453735, language=EN, stringName=Luis Ribeiro e Sousa, firstName=Luis Ribeiro e, middleName=null, lastName=Sousa, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060592558694893, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832916542939250, authorId=1166060592294453735, language=CN, stringName=Sousa Luis Ribeiro e, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060592663552496, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832916542939250, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060592797770226, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832916542939250, authorId=1166060592663552496, language=EN, stringName=Tiago Miranda, firstName=Tiago, middleName=null, lastName=Miranda, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Institute for Sustainability and Innovation in Structural Engineering, Department of Civil Engineering, University of Minho, Campus de Azurém, Guimarães 4800-058, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060592894239220, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832916542939250, authorId=1166060592663552496, language=CN, stringName=Miranda Tiago, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Institute for Sustainability and Innovation in Structural Engineering, Department of Civil Engineering, University of Minho, Campus de Azurém, Guimarães 4800-058, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060592999096823, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832916542939250, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060593129120250, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832916542939250, authorId=1166060592999096823, language=EN, stringName=Rita Leal e Sousa, firstName=Rita Leal e, middleName=null, lastName=Sousa, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, UAE, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060593225589244, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832916542939250, authorId=1166060592999096823, language=CN, stringName=Sousa Rita Leal e, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, UAE, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060593330446847, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832916542939250, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060593460470274, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832916542939250, authorId=1166060593330446847, language=EN, stringName=Joaquim Tinoco, firstName=Joaquim, middleName=null, lastName=Tinoco, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Institute for Sustainability and Innovation in Structural Engineering, Department of Civil Engineering, University of Minho, Campus de Azurém, Guimarães 4800-058, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060593565327876, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832916542939250, authorId=1166060593330446847, language=CN, stringName=Tinoco Joaquim, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Institute for Sustainability and Innovation in Structural Engineering, Department of Civil Engineering, University of Minho, Campus de Azurém, Guimarães 4800-058, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Luis Ribeiro e Sousa , Tiago Miranda , Rita Leal e Sousa , Joaquim Tinoco

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Key Technology Research on the Efficient Exploitation and Comprehensive Utilization of Resources in the Deep Jinchuan Nickel Deposit
    [Author(id=1166060877305799052, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833377614389633, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060877402268045, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833377614389633, authorId=1166060877305799052, language=EN, stringName=Zhiqiang Yang, firstName=Zhiqiang, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060877507125646, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833377614389633, authorId=1166060877305799052, language=CN, stringName=杨志强, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Zhiqiang Yang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Insights into the Organotemplate-Free Synthesis of Zeolite Catalysts
    [Author(id=1166060204682043501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832897353998418, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060204816261231, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832897353998418, authorId=1166060204682043501, language=EN, stringName=Yeqing Wang, firstName=Yeqing, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060204916924528, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832897353998418, authorId=1166060204682043501, language=CN, stringName=王叶青, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060205017587826, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832897353998418, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060205147611252, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832897353998418, authorId=1166060205017587826, language=EN, stringName=Qinming Wu, firstName=Qinming, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060205248274549, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832897353998418, authorId=1166060205017587826, language=CN, stringName=吴勤明, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060205353132151, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832897353998418, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060205487349881, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832897353998418, authorId=1166060205353132151, language=EN, stringName=Xiangju Meng, firstName=Xiangju, middleName=null, lastName=Meng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060205592207482, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832897353998418, authorId=1166060205353132151, language=CN, stringName=孟祥举, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060205726425212, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832897353998418, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060205860642942, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832897353998418, authorId=1166060205726425212, language=EN, stringName=Feng-Shou Xiao, firstName=Feng-Shou, middleName=null, lastName=Xiao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060205961306239, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832897353998418, authorId=1166060205726425212, language=CN, stringName=肖丰收, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yeqing Wang , Qinming Wu , Xiangju Meng , Feng-Shou Xiao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.