2017-10-20 , Volume 3 Issue 5

Cover illustration

  •  

    The advent of the first-generation “all-composite” wide-body passenger aircraft represents a major step forward in the development of lightweight aerostructures, with an estimated 20% weight reduction compared with an aluminum equivalent, and similar reductions in fuel consumption. These advantages are tempered by high development costs associated with slow production rates, arising from the autoclave cure cycle times of thermoset-based composites, and extensive physical testing. “Out-of-autoclave” processing, such as resin infusion of a textile reinforcement, is an attractive alternative whereby large, highly integrated structures may be manufactured. Further significant reductions in development costs may be achieved through the effective use of simulation at all stages of the development cycle. Combining the further exploration of “out-of-autoclave” processing with reliable, robust, and predictive resin-infusion process modeling tools will facilitate the next evolution in cost-effective composite aerostructures.


  • Select all
    Editorial
  • Editorial
    Special Issue: Intelligent Manufacturing
    [Author(id=1166061356228207024, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833582048961389, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061356337258930, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833582048961389, authorId=1166061356228207024, language=EN, stringName=Peigen Li, firstName=Peigen, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Engineering Research Center for Manufacturing Equipment Digitization, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061356421145011, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833582048961389, authorId=1166061356228207024, language=CN, stringName=李培根, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Engineering Research Center for Manufacturing Equipment Digitization, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Peigen Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Editorial
    Introduction to the Special Issue on Additive Manufacturing
    [Author(id=1166062115296567883, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834115094667877, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062115401425484, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834115094667877, authorId=1166062115296567883, language=EN, stringName=Editorial Board of Special Issue on Additive Manufacturing, firstName=Editorial Board of Special Issue on Additive, middleName=null, lastName=Manufacturing, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062115497894477, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834115094667877, authorId=1166062115296567883, language=CN, stringName=增材制造专题编委会, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Editorial Board of Special Issue on Additive Manufacturing

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Editorial
    The Development History of Animal Nutrition and Feed Science in China
    [Author(id=1166061674806567008, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833873636975192, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061674919813218, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833873636975192, authorId=1166061674806567008, language=EN, stringName=Defa Li, firstName=Defa, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061675003699299, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833873636975192, authorId=1166061674806567008, language=CN, stringName=李德发, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Defa Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • News & Highlights
    Climate Agreement—Revisited
    [Author(id=1166061886216265789, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833868750611025, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061886350483519, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833868750611025, authorId=1166061886216265789, language=EN, stringName=Lance A. Davis, firstName=Lance A., middleName=null, lastName=Davis, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Advisor, US National Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061886455341120, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833868750611025, authorId=1166061886216265789, language=CN, stringName=Lance A. Davis, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Advisor, US National Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Lance A. Davis

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    Enhancing the Resilience of Electricity Systems
    [Author(id=1166061923449102449, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833879999734376, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061923583320179, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833879999734376, authorId=1166061923449102449, language=EN, stringName=Ben A. Wender, firstName=Ben A., middleName=null, lastName=Wender, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Board on Energy and Environmental Systems, Division on Engineering and Physical Sciences, The National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061923683983476, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833879999734376, authorId=1166061923449102449, language=CN, stringName=Ben A. Wender, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Board on Energy and Environmental Systems, Division on Engineering and Physical Sciences, The National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061923784646774, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833879999734376, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061923918864504, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833879999734376, authorId=1166061923784646774, language=EN, stringName=M. Granger Morgan, firstName=M. Granger, middleName=null, lastName=Morgan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061924015333497, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833879999734376, authorId=1166061923784646774, language=CN, stringName=M. Granger Morgan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061924115996795, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833879999734376, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061924254408829, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833879999734376, authorId=1166061924115996795, language=EN, stringName=K. John Holmes, firstName=K. John, middleName=null, lastName=Holmes, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Board on Energy and Environmental Systems, Division on Engineering and Physical Sciences, The National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061924350877822, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833879999734376, authorId=1166061924115996795, language=CN, stringName=K. John Holmes, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Board on Energy and Environmental Systems, Division on Engineering and Physical Sciences, The National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ben A. Wender , M. Granger Morgan , K. John Holmes

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water
    [Author(id=1166061221679128637, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833584305496947, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061221783986240, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833584305496947, authorId=1166061221679128637, language=EN, stringName=Joe A. Sestak Jr., firstName=Joe A. Sestak, middleName=null, lastName=Jr., prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= President, FIRST Global, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061221872066625, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833584305496947, authorId=1166061221679128637, language=CN, stringName=Joe A. Sestak Jr., firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= President, FIRST Global, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Joe A. Sestak Jr.

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    Standardization for Additive Manufacturing in Aerospace
    [Author(id=1166061198056808477, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833574880895843, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061198203609120, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833574880895843, authorId=1166061198056808477, language=EN, stringName=Holger Krueger, firstName=Holger, middleName=null, lastName=Krueger, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Airbus Operations GmbH, Hamburg 21129, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061198488821793, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833574880895843, authorId=1166061198056808477, language=CN, stringName=Holger Krueger, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Airbus Operations GmbH, Hamburg 21129, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Holger Krueger

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • Topic Insights
    Animal Nutrition and Feed Science
    [Author(id=1166061335512539541, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833868431843920, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061335663534487, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833868431843920, authorId=1166061335512539541, language=EN, stringName=Adrian R. Egan, firstName=Adrian R., middleName=null, lastName=Egan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Fellow of the Australian Academy of Technological Sciences and Engineering; Emeritus Professor and Honorary Professorial Research Fellow, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061335764197784, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833868431843920, authorId=1166061335512539541, language=CN, stringName=Adrian R. Egan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Fellow of the Australian Academy of Technological Sciences and Engineering; Emeritus Professor and Honorary Professorial Research Fellow, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Adrian R. Egan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research
    Integrated and Intelligent Manufacturing: Perspectives and Enablers
    [Author(id=1166061986288165076, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833911935165104, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061986418188502, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833911935165104, authorId=1166061986288165076, language=EN, stringName=Yubao Chen, firstName=Yubao, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Industrial and Manufacturing Systems Engineering, University of Michigan–Dearborn, Dearborn, MI 48128, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061986518851799, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833911935165104, authorId=1166061986288165076, language=CN, stringName=Yubao Chen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Industrial and Manufacturing Systems Engineering, University of Michigan–Dearborn, Dearborn, MI 48128, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yubao Chen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Simulating Resin Infusion through Textile Reinforcement Materials for the Manufacture of Complex Composite Structures
    [Author(id=1166061573329576796, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833656401387527, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061573497348959, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833656401387527, authorId=1166061573329576796, language=EN, stringName=Robert S. Pierce, firstName=Robert S., middleName=null, lastName=Pierce, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Northern Ireland Advanced Composites and Engineering Centre, Belfast BT3 9DZ, UK
    b  School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast BT9 5AH, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061573598012256, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833656401387527, authorId=1166061573329576796, language=CN, stringName=Robert S. Pierce, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Northern Ireland Advanced Composites and Engineering Centre, Belfast BT3 9DZ, UK
    b  School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast BT9 5AH, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061573702869858, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833656401387527, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061573832893284, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833656401387527, authorId=1166061573702869858, language=EN, stringName=Brian G. Falzon, firstName=Brian G., middleName=null, lastName=Falzon, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast BT9 5AH, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061573933556581, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833656401387527, authorId=1166061573702869858, language=CN, stringName=Brian G. Falzon, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast BT9 5AH, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Robert S. Pierce , Brian G. Falzon

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Control for Intelligent Manufacturing: A Multiscale Challenge
    [Author(id=1166062052600111465, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833944910783373, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062052717551979, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833944910783373, authorId=1166062052600111465, language=EN, stringName=Han-Xiong Li, firstName=Han-Xiong, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062052797243756, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833944910783373, authorId=1166062052600111465, language=CN, stringName=Han-Xiong Li, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062052881129838, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833944910783373, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062052994376048, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833944910783373, authorId=1166062052881129838, language=EN, stringName=Haitao Si, firstName=Haitao, middleName=null, lastName=Si, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062053078262129, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833944910783373, authorId=1166062052881129838, language=CN, stringName=Haitao Si, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Han-Xiong Li , Haitao Si

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Intelligent Manufacturing in the Context of Industry 4.0: A Review
    [Author(id=1166062210989613899, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834149836087923, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062211123831629, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834149836087923, authorId=1166062210989613899, language=EN, stringName=Ray Y. Zhong, firstName=Ray Y., middleName=null, lastName=Zhong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, The University of Auckland, Auckland 1142, New Zealand, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062211224494926, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834149836087923, authorId=1166062210989613899, language=CN, stringName=钟润阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, The University of Auckland, Auckland 1142, New Zealand, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062211325158224, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834149836087923, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062211455181650, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834149836087923, authorId=1166062211325158224, language=EN, stringName=Xun Xu, firstName=Xun, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, The University of Auckland, Auckland 1142, New Zealand, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062211560039251, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834149836087923, authorId=1166062211325158224, language=CN, stringName=徐旬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, The University of Auckland, Auckland 1142, New Zealand, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062211660702549, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834149836087923, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062211790725975, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834149836087923, authorId=1166062211660702549, language=EN, stringName=Eberhard Klotz, firstName=Eberhard, middleName=null, lastName=Klotz, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Industry 4.0 Campaign, Festo AG & Co. KG, Esslingen 73726, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062211891389272, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834149836087923, authorId=1166062211660702549, language=CN, stringName=Eberhard Klotz, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Industry 4.0 Campaign, Festo AG & Co. KG, Esslingen 73726, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062211992052570, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834149836087923, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062212126270300, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834149836087923, authorId=1166062211992052570, language=EN, stringName=Stephen T. Newman, firstName=Stephen T., middleName=null, lastName=Newman, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062212226933597, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834149836087923, authorId=1166062211992052570, language=CN, stringName=Stephen T. Newman, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ray Y. Zhong , Xun Xu , Eberhard Klotz , Stephen T. Newman

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Research Review on the Key Technologies of Intelligent Design for Customized Products
    [Author(id=1166061852150129581, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833942033490799, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061852259181487, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833942033490799, authorId=1166061852150129581, language=EN, stringName=Shuyou Zhang, firstName=Shuyou, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061852334678960, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833942033490799, authorId=1166061852150129581, language=CN, stringName=张树有, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061852414370738, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833942033490799, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061852523422644, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833942033490799, authorId=1166061852414370738, language=EN, stringName=Jinghua Xu, firstName=Jinghua, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061852603114421, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833942033490799, authorId=1166061852414370738, language=CN, stringName=徐敬华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061852682806199, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833942033490799, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061852791858105, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833942033490799, authorId=1166061852682806199, language=EN, stringName=Huawei Gou, firstName=Huawei, middleName=null, lastName=Gou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061852871549882, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833942033490799, authorId=1166061852682806199, language=CN, stringName=苟华伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061852951241660, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833942033490799, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061853060293566, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833942033490799, authorId=1166061852951241660, language=EN, stringName=Jianrong Tan, firstName=Jianrong, middleName=null, lastName=Tan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061853148373951, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833942033490799, authorId=1166061852951241660, language=CN, stringName=谭建荣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Shuyou Zhang , Jinghua Xu , Huawei Gou , Jianrong Tan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    An Intelligent Non-Collocated Control Strategy for Ball-Screw Feed Drives with Dynamic Variations
    [Author(id=1166061629587775524, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833680443138084, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061629776519207, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833680443138084, authorId=1166061629587775524, language=EN, stringName=Hui Liu, firstName=Hui, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China
    b  Collaborative Innovation Center of High-End Manufacturing Equipment, Xi’an Jiaotong University, Xi’an 710054, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061629889765416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833680443138084, authorId=1166061629587775524, language=CN, stringName=刘辉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China
    b  Collaborative Innovation Center of High-End Manufacturing Equipment, Xi’an Jiaotong University, Xi’an 710054, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061630003011626, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833680443138084, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061630158200876, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833680443138084, authorId=1166061630003011626, language=EN, stringName=Jun Zhang, firstName=Jun, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061630271447085, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833680443138084, authorId=1166061630003011626, language=CN, stringName=张俊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061630384693295, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833680443138084, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061630573436978, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833680443138084, authorId=1166061630384693295, language=EN, stringName=Wanhua Zhao, firstName=Wanhua, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China
    b  Collaborative Innovation Center of High-End Manufacturing Equipment, Xi’an Jiaotong University, Xi’an 710054, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061630690877491, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833680443138084, authorId=1166061630384693295, language=CN, stringName=赵万华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China
    b  Collaborative Innovation Center of High-End Manufacturing Equipment, Xi’an Jiaotong University, Xi’an 710054, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Hui Liu , Jun Zhang , Wanhua Zhao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Additive Design and Manufacturing of Jet Engine Parts
    [Author(id=1166061303543554350, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833612147286943, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061303677772080, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833612147286943, authorId=1166061303543554350, language=EN, stringName=Pinlian Han, firstName=Pinlian, middleName=null, lastName=Han, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061303774241073, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833612147286943, authorId=1166061303543554350, language=CN, stringName=韩品连, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Pinlian Han

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Review on the 3D Printing of Functional Structures for Medical Phantoms and Regenerated Tissue and Organ Applications
    [Author(id=1166061840917783380, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833936501203785, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061841047806807, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833936501203785, authorId=1166061840917783380, language=EN, stringName=Kan Wang, firstName=Kan, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061841144275801, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833936501203785, authorId=1166061840917783380, language=CN, stringName=Kan Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061841244939100, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833936501203785, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061841379156832, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833936501203785, authorId=1166061841244939100, language=EN, stringName=Chia-Che Ho, firstName=Chia-Che, middleName=null, lastName=Ho, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061841475625826, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833936501203785, authorId=1166061841244939100, language=CN, stringName=Chia-Che Ho, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061841614037861, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833936501203785, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061841777615722, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833936501203785, authorId=1166061841614037861, language=EN, stringName=Chuck Zhang, firstName=Chuck, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a  H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
    c  Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061841874084716, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833936501203785, authorId=1166061841614037861, language=CN, stringName=Chuck Zhang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a  H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
    c  Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061841974748015, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833936501203785, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061842163491700, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833936501203785, authorId=1166061841974748015, language=EN, stringName=Ben Wang, firstName=Ben, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
    b  School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
    c  Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061842243183478, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833936501203785, authorId=1166061841974748015, language=CN, stringName=Ben Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
    b  School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
    c  Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Kan Wang , Chia-Che Ho , Chuck Zhang , Ben Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials
    [Author(id=1166062278933143645, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834176155345539, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062279084138591, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834176155345539, authorId=1166062278933143645, language=EN, stringName=Amelia Yilin Lee, firstName=Amelia Yilin, middleName=null, lastName=Lee, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062279205773408, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834176155345539, authorId=1166062278933143645, language=CN, stringName=Amelia Yilin Lee, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062279319019618, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834176155345539, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062279470014564, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834176155345539, authorId=1166062279319019618, language=EN, stringName=Jia An, firstName=Jia, middleName=null, lastName=An, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062279591649381, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834176155345539, authorId=1166062279319019618, language=CN, stringName=Jia An, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062279704895591, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834176155345539, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062279855890537, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834176155345539, authorId=1166062279704895591, language=EN, stringName=Chee Kai Chua, firstName=Chee Kai, middleName=null, lastName=Chua, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062279969136746, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834176155345539, authorId=1166062279704895591, language=CN, stringName=Chee Kai Chua, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Amelia Yilin Lee , Jia An , Chee Kai Chua

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing
    [Author(id=1166061495424574022, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061495567180361, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, authorId=1166061495424574022, language=EN, stringName=Dongdong Gu, firstName=Dongdong, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    b  Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061495667843658, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, authorId=1166061495424574022, language=CN, stringName=顾冬冬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    b  Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061495772701260, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061495936279119, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, authorId=1166061495772701260, language=EN, stringName=Chenglong Ma, firstName=Chenglong, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    b  Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061496036942416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, authorId=1166061495772701260, language=CN, stringName=马成龙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    b  Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061496158577234, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061496322155093, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, authorId=1166061496158577234, language=EN, stringName=Mujian Xia, firstName=Mujian, middleName=null, lastName=Xia, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    b  Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061496427012694, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, authorId=1166061496158577234, language=CN, stringName=夏木建, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    b  Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061496527675992, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061496691253851, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, authorId=1166061496527675992, language=EN, stringName=Donghua Dai, firstName=Donghua, middleName=null, lastName=Dai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    b  Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061496796111452, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, authorId=1166061496527675992, language=CN, stringName=戴冬华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    b  Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061496888386142, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061497022603873, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, authorId=1166061496888386142, language=EN, stringName=Qimin Shi, firstName=Qimin, middleName=null, lastName=Shi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    b  Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061497106489954, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833629746586566, authorId=1166061496888386142, language=CN, stringName=石齐民, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    b  Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Dongdong Gu , Chenglong Ma , Mujian Xia , Donghua Dai , Qimin Shi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion
    [Author(id=1166062092219507228, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834209646863042, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062092332753438, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834209646863042, authorId=1166062092219507228, language=EN, stringName=Patcharapit Promoppatum, firstName=Patcharapit, middleName=null, lastName=Promoppatum, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062092420833823, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834209646863042, authorId=1166062092219507228, language=CN, stringName=Patcharapit Promoppatum, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062092500525601, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834209646863042, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062092613771811, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834209646863042, authorId=1166062092500525601, language=EN, stringName=Shi-Chune Yao, firstName=Shi-Chune, middleName=null, lastName=Yao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062092701852196, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834209646863042, authorId=1166062092500525601, language=CN, stringName=Shi-Chune Yao, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062092785738278, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834209646863042, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062092903178792, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834209646863042, authorId=1166062092785738278, language=EN, stringName=P. Chris Pistorius, firstName=P. Chris, middleName=null, lastName=Pistorius, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062092987064873, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834209646863042, authorId=1166062092785738278, language=CN, stringName=P. Chris Pistorius, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062093075145259, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834209646863042, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062093184197165, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834209646863042, authorId=1166062093075145259, language=EN, stringName=Anthony D. Rollett, firstName=Anthony D., middleName=null, lastName=Rollett, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062093272277550, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834209646863042, authorId=1166062093075145259, language=CN, stringName=Anthony D. Rollett, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Patcharapit Promoppatum , Shi-Chune Yao , P. Chris Pistorius , Anthony D. Rollett

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing
    [Author(id=1166061311097495895, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061311231713625, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, authorId=1166061311097495895, language=EN, stringName=Quy Bau Nguyen, firstName=Quy Bau, middleName=null, lastName=Nguyen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061311336571226, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, authorId=1166061311097495895, language=CN, stringName=Quy Bau Nguyen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061311441428828, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061311575646558, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, authorId=1166061311441428828, language=EN, stringName=Mui Ling Sharon Nai, firstName=Mui Ling Sharon, middleName=null, lastName=Nai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061311680504159, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, authorId=1166061311441428828, language=CN, stringName=Mui Ling Sharon Nai, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061311781167457, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061311919579491, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, authorId=1166061311781167457, language=EN, stringName=Zhiguang Zhu, firstName=Zhiguang, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061312024437092, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, authorId=1166061311781167457, language=CN, stringName=Zhiguang Zhu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061312125100390, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061312263512424, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, authorId=1166061312125100390, language=EN, stringName=Chen-Nan Sun, firstName=Chen-Nan, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061312368370025, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, authorId=1166061312125100390, language=CN, stringName=Chen-Nan Sun, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061312464839019, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061312603251053, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, authorId=1166061312464839019, language=EN, stringName=Jun Wei, firstName=Jun, middleName=null, lastName=Wei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061312703914350, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, authorId=1166061312464839019, language=CN, stringName=Jun Wei, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061312800383344, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061312938795378, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, authorId=1166061312800383344, language=EN, stringName=Wei Zhou, firstName=Wei, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061313039458675, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833620892410805, authorId=1166061312800383344, language=CN, stringName=Wei Zhou, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Quy Bau Nguyen , Mui Ling Sharon Nai , Zhiguang Zhu , Chen-Nan Sun , Jun Wei , Wei Zhou

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Modeling and Experimental Validation of the Electron Beam Selective Melting Process
    [Author(id=1166062314182074641, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062314349846804, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, authorId=1166062314182074641, language=EN, stringName=Wentao Yan, firstName=Wentao, middleName=null, lastName=Yan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
    b  Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062314450510101, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, authorId=1166062314182074641, language=CN, stringName=闫文韬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
    b  Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062314551173399, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062314685391129, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, authorId=1166062314551173399, language=EN, stringName=Ya Qian, firstName=Ya, middleName=null, lastName=Qian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062314786054426, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, authorId=1166062314551173399, language=CN, stringName=钱亚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062314886717724, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062315020935454, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, authorId=1166062314886717724, language=EN, stringName=Weixin Ma, firstName=Weixin, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062315117404447, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, authorId=1166062314886717724, language=CN, stringName=马维馨, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062315222262049, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062315352285475, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, authorId=1166062315222262049, language=EN, stringName=Bin Zhou, firstName=Bin, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062315452948772, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, authorId=1166062315222262049, language=CN, stringName=周斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062315557806374, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062316577022248, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, authorId=1166062315557806374, language=EN, stringName=Yongxing Shen, firstName=Yongxing, middleName=null, lastName=Shen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062316673491241, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, authorId=1166062315557806374, language=CN, stringName=沈泳星, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062316778348843, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062316908372269, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, authorId=1166062316778348843, language=EN, stringName=Feng Lin, firstName=Feng, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062317004841262, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834212746453716, authorId=1166062316778348843, language=CN, stringName=林峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wentao Yan , Ya Qian , Weixin Ma , Bin Zhou , Yongxing Shen , Feng Lin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing
    [Author(id=1166062368959685098, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834242903499569, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062369127457261, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834242903499569, authorId=1166062368959685098, language=EN, stringName=Zhen Zhang, firstName=Zhen, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  State Key Laboratory of Tribology & Institute of Manufacturing Engineering, Tsinghua University, Beijing 100084, China
    b  Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipment and Control, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062369232314862, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834242903499569, authorId=1166062368959685098, language=CN, stringName=Zhen Zhang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  State Key Laboratory of Tribology & Institute of Manufacturing Engineering, Tsinghua University, Beijing 100084, China
    b  Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipment and Control, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062369328783856, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834242903499569, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062369458807282, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834242903499569, authorId=1166062369328783856, language=EN, stringName=Peng Yan, firstName=Peng, middleName=null, lastName=Yan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Key Laboratory of High-Efficiency and Clean Mechanical Manufacturing, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062369563664883, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834242903499569, authorId=1166062369328783856, language=CN, stringName=Peng Yan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Key Laboratory of High-Efficiency and Clean Mechanical Manufacturing, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062369660133877, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834242903499569, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062369790157303, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834242903499569, authorId=1166062369660133877, language=EN, stringName=Guangbo Hao, firstName=Guangbo, middleName=null, lastName=Hao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e  Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062369895014904, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834242903499569, authorId=1166062369660133877, language=CN, stringName=Guangbo Hao, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e  Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Zhen Zhang , Peng Yan , Guangbo Hao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Nutritional and Metabolic Consequences of Feeding High-Fiber Diets to Swine: A Review
    [Author(id=1166056814589698803, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830494588232009, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056814740693749, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830494588232009, authorId=1166056814589698803, language=EN, stringName=Atta K. Agyekum, firstName=Atta K., middleName=null, lastName=Agyekum, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Prairie Swine Center Inc., Saskatoon, SK S7H 5N9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056814853939958, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830494588232009, authorId=1166056814589698803, language=CN, stringName=Atta K. Agyekum, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Prairie Swine Center Inc., Saskatoon, SK S7H 5N9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056814975574776, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830494588232009, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056815130764026, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830494588232009, authorId=1166056814975574776, language=EN, stringName=C. Martin Nyachoti, firstName=C. Martin, middleName=null, lastName=Nyachoti, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056815244010235, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830494588232009, authorId=1166056814975574776, language=CN, stringName=C. Martin Nyachoti, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Atta K. Agyekum , C. Martin Nyachoti

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Molecular Structure of Feeds in Relation to Nutrient Utilization and Availability in Animals: A Novel Approach
    [Author(id=1166059108337115431, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832138948338020, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059108462944554, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832138948338020, authorId=1166059108337115431, language=EN, stringName=Peiqiang Yu, firstName=Peiqiang, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059108559413549, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832138948338020, authorId=1166059108337115431, language=CN, stringName=俞培强, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059108655882545, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832138948338020, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059108785905973, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832138948338020, authorId=1166059108655882545, language=EN, stringName=Luciana L. Prates, firstName=Luciana L., middleName=null, lastName=Prates, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059108886569271, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832138948338020, authorId=1166059108655882545, language=CN, stringName=Luciana L. Prates, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Peiqiang Yu , Luciana L. Prates

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Research Progress in the Application of Chinese Herbal Medicines in Aquaculture: A Review
    [Author(id=1166056999684334272, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056999814357698, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, authorId=1166056999684334272, language=EN, stringName=Hongyu Pu, firstName=Hongyu, middleName=null, lastName=Pu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056999910826691, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, authorId=1166056999684334272, language=CN, stringName=蒲红宇,李晓宇,杜青波,崔昊,徐永平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057000011489989, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057000141513415, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, authorId=1166057000011489989, language=EN, stringName=Hongyu Pu, firstName=Hongyu, middleName=null, lastName=Pu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057000237982408, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, authorId=1166057000011489989, language=CN, stringName=蒲红宇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057000338645706, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057000502223565, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, authorId=1166057000338645706, language=EN, stringName=Xiaoyu Lia, firstName=Xiaoyu, middleName=null, lastName=Lia, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address= Ministry of Education Center for Food Safety of Animal Origin, Dalian 116620, China
    d  Liaoning Food Safety of Animal Origin Innovation Team, Dalian 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057000598692558, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, authorId=1166057000338645706, language=CN, stringName=李晓宇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address= Ministry of Education Center for Food Safety of Animal Origin, Dalian 116620, China
    d  Liaoning Food Safety of Animal Origin Innovation Team, Dalian 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057000699355856, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057000825184978, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, authorId=1166057000699355856, language=EN, stringName=Qingbo Du, firstName=Qingbo, middleName=null, lastName=Du, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057000921653971, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, authorId=1166057000699355856, language=CN, stringName=杜青波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057001022317269, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057001152340695, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, authorId=1166057001022317269, language=EN, stringName=Hao Cui, firstName=Hao, middleName=null, lastName=Cui, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057001253003992, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, authorId=1166057001022317269, language=CN, stringName=崔昊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057001349472986, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057001513050845, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, authorId=1166057001349472986, language=EN, stringName=Yongping Xua, firstName=Yongping, middleName=null, lastName=Xua, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address= Ministry of Education Center for Food Safety of Animal Origin, Dalian 116620, China
    d  Liaoning Food Safety of Animal Origin Innovation Team, Dalian 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057001617908446, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830517979865519, authorId=1166057001349472986, language=CN, stringName=徐永平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address= Ministry of Education Center for Food Safety of Animal Origin, Dalian 116620, China
    d  Liaoning Food Safety of Animal Origin Innovation Team, Dalian 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Hongyu Pu , Hongyu Pu , Xiaoyu Lia , Qingbo Du , Hao Cui , Yongping Xua

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    The Biofunctions of Phytochemicals and Their Applications in Farm Animals: The Nrf2/Keap1 System as a Target
    [Author(id=1166060350354416217, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832892480217159, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060350484439644, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832892480217159, authorId=1166060350354416217, language=EN, stringName=Si Qin, firstName=Si, middleName=null, lastName=Qin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
    b  Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060350564131422, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832892480217159, authorId=1166060350354416217, language=CN, stringName=覃思, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
    b  Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166060350643823200, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832892480217159, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166060351121973864, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832892480217159, authorId=1166060350643823200, language=EN, stringName=De-Xing Hou, firstName=De-Xing, middleName=null, lastName=Hou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
    b  Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
    c  The United Graduate School of Agricultural Sciences, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166060351197471337, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832892480217159, authorId=1166060350643823200, language=CN, stringName=侯德兴, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
    b  Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
    c  The United Graduate School of Agricultural Sciences, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Si Qin , De-Xing Hou

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Methane Emissions from Grazing Holstein-Friesian Heifers at Different Ages Estimated Using the Sulfur Hexafluoride Tracer Technique
    [Author(id=1166056303555699329, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056303681528452, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, authorId=1166056303555699329, language=EN, stringName=Steven J. Morrison, firstName=Steven J., middleName=null, lastName=Morrison, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Agri-Food and Biosciences Institute, Hillsborough, County Down BT26 6DR, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056303790580358, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, authorId=1166056303555699329, language=CN, stringName=Steven J. Morrison, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Agri-Food and Biosciences Institute, Hillsborough, County Down BT26 6DR, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056303878660745, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056304000295564, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, authorId=1166056303878660745, language=EN, stringName=Judith McBride, firstName=Judith, middleName=null, lastName=McBride, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Agri-Food and Biosciences Institute, Hillsborough, County Down BT26 6DR, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056304096764558, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, authorId=1166056303878660745, language=CN, stringName=Judith McBride, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Agri-Food and Biosciences Institute, Hillsborough, County Down BT26 6DR, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056304184844945, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056304310674068, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, authorId=1166056304184844945, language=EN, stringName=Alan W. Gordon, firstName=Alan W., middleName=null, lastName=Gordon, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056304398754454, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, authorId=1166056304184844945, language=CN, stringName=Alan W. Gordon, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056304486834841, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056304612663964, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, authorId=1166056304486834841, language=EN, stringName=Alastair R. G. Wylie, firstName=Alastair R. G., middleName=null, lastName=Wylie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056304700744350, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, authorId=1166056304486834841, language=CN, stringName=Alastair R. G. Wylie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056304793019041, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056304918848165, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, authorId=1166056304793019041, language=EN, stringName=Tianhai Yan, firstName=Tianhai, middleName=null, lastName=Yan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Agri-Food and Biosciences Institute, Hillsborough, County Down BT26 6DR, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056305011122857, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830133144085458, authorId=1166056304793019041, language=CN, stringName=Tianhai Yan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Agri-Food and Biosciences Institute, Hillsborough, County Down BT26 6DR, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Steven J. Morrison , Judith McBride , Alan W. Gordon , Alastair R. G. Wylie , Tianhai Yan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Leucine Supplementation in a Chronically Protein-Restricted Diet Enhances Muscle Weight and Postprandial Protein Synthesis of Skeletal Muscle by Promoting the mTOR Pathway in Adult Rats
    [Author(id=1166059120056000981, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059120240550362, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, authorId=1166059120056000981, language=EN, stringName=Bo Zhang, firstName=Bo, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    b  State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059120353796571, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, authorId=1166059120056000981, language=CN, stringName=张博, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    b  State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059120475431389, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059120659980768, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, authorId=1166059120475431389, language=EN, stringName=Licui Chu, firstName=Licui, middleName=null, lastName=Chu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    b  State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059120773226977, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, authorId=1166059120475431389, language=CN, stringName=楚丽翠, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    b  State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059120886473187, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059121071022566, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, authorId=1166059120886473187, language=EN, stringName=Hong Liu, firstName=Hong, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    b  State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059121188463079, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, authorId=1166059120886473187, language=CN, stringName=刘宏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    b  State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059121301709289, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059121490452972, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, authorId=1166059121301709289, language=EN, stringName=Chunyuan Xie, firstName=Chunyuan, middleName=null, lastName=Xie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    b  State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059121603699181, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, authorId=1166059121301709289, language=CN, stringName=谢春元, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    b  State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059121716945391, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059121905689074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, authorId=1166059121716945391, language=EN, stringName=Shiyan Qiao, firstName=Shiyan, middleName=null, lastName=Qiao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    b  State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059122023129587, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, authorId=1166059121716945391, language=CN, stringName=谯仕彦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    b  State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059122140570101, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=zengxf@cau.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059122333508088, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, authorId=1166059122140570101, language=EN, stringName=Xiangfang Zeng, firstName=Xiangfang, middleName=null, lastName=Zeng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    b  State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059122450948601, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832151279591805, authorId=1166059122140570101, language=CN, stringName=曾祥芳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    b  State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Bo Zhang , Licui Chu , Hong Liu , Chunyuan Xie , Shiyan Qiao , Xiangfang Zeng

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Use of the RegCM System over East Asia: Review and Perspectives
    [Author(id=1166061704250581252, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833876984029793, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061704384798982, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833876984029793, authorId=1166061704250581252, language=EN, stringName=Xuejie Gao, firstName=Xuejie, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061704481267975, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833876984029793, authorId=1166061704250581252, language=CN, stringName=高学杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061704586125578, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833876984029793, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061704716149007, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833876984029793, authorId=1166061704586125578, language=EN, stringName=Filippo Giorgi, firstName=Filippo, middleName=null, lastName=Giorgi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  The Abdus Salam International Center for Theoretical Physics, Trieste 34151, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061704816812305, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833876984029793, authorId=1166061704586125578, language=CN, stringName=Filippo Giorgi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  The Abdus Salam International Center for Theoretical Physics, Trieste 34151, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xuejie Gao , Filippo Giorgi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Robustness Analysis of CMIP5 Models over the East Asia-Western North Pacific Domain
    [Author(id=1166061724785893796, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061724890751398, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061724785893796, language=EN, stringName=Tianjun Zhou, firstName=Tianjun, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061724978831783, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061724785893796, language=CN, stringName=周天军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061725062717865, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061725171769771, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061725062717865, language=EN, stringName=Xiaolong Chen, firstName=Xiaolong, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061725251461548, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061725062717865, language=CN, stringName=陈晓龙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061725335347630, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061725440205232, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061725335347630, language=EN, stringName=Bo Wu, firstName=Bo, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061725519897009, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061725335347630, language=CN, stringName=吴波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061725599588787, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061725704446389, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061725599588787, language=EN, stringName=Zhun Guo, firstName=Zhun, middleName=null, lastName=Guo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061725784138166, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061725599588787, language=CN, stringName=郭准, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061725863829944, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061725964493242, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061725863829944, language=EN, stringName=Yong Sun, firstName=Yong, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061726044185019, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061725863829944, language=CN, stringName=孙咏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061726123876797, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061726228734399, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061726123876797, language=EN, stringName=Liwei Zou, firstName=Liwei, middleName=null, lastName=Zou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061726308426176, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061726123876797, language=CN, stringName=邹立维, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061726388117954, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061726488781252, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061726388117954, language=EN, stringName=Wenmin Man, firstName=Wenmin, middleName=null, lastName=Man, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061726568473030, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061726388117954, language=CN, stringName=满文敏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061726648164808, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061726765605322, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061726648164808, language=EN, stringName=Lixia Zhang, firstName=Lixia, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061726862074315, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061726648164808, language=CN, stringName=张丽霞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166061726945960397, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166061727050817999, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061726945960397, language=EN, stringName=Chao He, firstName=Chao, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166061727134704080, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159833890808455813, authorId=1166061726945960397, language=CN, stringName=何超, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Tianjun Zhou , Xiaolong Chen , Bo Wu , Zhun Guo , Yong Sun , Liwei Zou , Wenmin Man , Lixia Zhang , Chao He

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.