2017-12-20 , Volume 3 Issue 6

Cover illustration

  •  

    China possesses world-leading technologies in the fields of bridge engineering and tunnel engineering. The Hong Kong–Zhuhai–Macao (HZM) Bridge is a typical mega-project in China: With a total length of 55 km, it will be the longest sea-crossing bridge in the world. The main section of the HZM Bridge comprises a combined design of bridges with a total length of 22.9 km, two 100 000 m2 artificial islands, and an undersea tunnel that is 6.7 km long—the longest highway immersed tunnel in the world. The HZM tunnel is also the first deeply buried immersed tunnel in the world and the first offshore immersed tunnel constructed in China. Many breakthrough technologies were developed during its construction, including: a factory method for prefabricating 33 immersed tunnel elements including 5 curve element, ways of controlling settlement and sedimentation, risk-management techniques, and the mitigation of immersed tunnel element installation under offshore conditions. These advanced technologies ensure the highly efficient and safe construction of the HZM Bridge. When it successfully opens to traffic in 2018, the HZM Bridge will play a significant role in the economic development of the Pearl River Delta.

    Download cover

  • Select all
    Editorial
  • Editorial
    The Statics, Dynamics, and Aerodynamics of Long-Span Bridges
    [Author(id=1166062568323342643, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834500890944204, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062568461754677, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834500890944204, authorId=1166062568323342643, language=EN, stringName=Yeong-Bin Yang, firstName=Yeong-Bin, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aChongqing University, Chongqing 400044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062568558223670, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834500890944204, authorId=1166062568323342643, language=CN, stringName=杨永斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aChongqing University, Chongqing 400044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062568654692664, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834500890944204, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062568788910394, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834500890944204, authorId=1166062568654692664, language=EN, stringName=Yaojun Ge, firstName=Yaojun, middleName=null, lastName=Ge, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=aChongqing University, Chongqing 400044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062568889573691, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834500890944204, authorId=1166062568654692664, language=CN, stringName=葛耀君, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=aChongqing University, Chongqing 400044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yeong-Bin Yang , Yaojun Ge

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Editorial
    Advances in Underground Construction Help Provide Quality of Life for Modern Societies
    [Author(id=1166062824813421494, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834495027307202, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062824943444920, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834495027307202, authorId=1166062824813421494, language=EN, stringName=Raymond L. Sterling, firstName=Raymond L., middleName=null, lastName=Sterling, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Professor Emeritus, Louisiana Tech University, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062825044108217, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834495027307202, authorId=1166062824813421494, language=CN, stringName=Raymond L. Sterling, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Professor Emeritus, Louisiana Tech University, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Raymond L. Sterling

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • News & Highlights
    Clean Energy Perspective
    [Author(id=1166063046989898592, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834872116208322, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063047145087842, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834872116208322, authorId=1166063046989898592, language=EN, stringName=Lance A. Davis, firstName=Lance A., middleName=null, lastName=Davis, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Advisor, US National Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166063047262528355, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834872116208322, authorId=1166063046989898592, language=CN, stringName=Lance A. Davis, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Advisor, US National Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Lance A. Davis

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    The Hong Kong–Zhuhai–Macao Island and Tunnel Project
    [Author(id=1166062557531398428, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834490874946240, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062557686587678, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834490874946240, authorId=1166062557531398428, language=EN, stringName=Ming Lin, firstName=Ming, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Hong Kong–Zhuhai–Macao Island and Tunnel Project General Management Office, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062557787250975, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834490874946240, authorId=1166062557531398428, language=CN, stringName=林鸣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Hong Kong–Zhuhai–Macao Island and Tunnel Project General Management Office, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062557887914273, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834490874946240, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062558022132003, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834490874946240, authorId=1166062557887914273, language=EN, stringName=Wei Lin, firstName=Wei, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Hong Kong–Zhuhai–Macao Island and Tunnel Project General Management Office, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062558122795300, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834490874946240, authorId=1166062557887914273, language=CN, stringName=林巍, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Hong Kong–Zhuhai–Macao Island and Tunnel Project General Management Office, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ming Lin , Wei Lin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    Supersonic Transport Redux?
    [Author(id=1166063065071543176, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834877543637709, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063065226732426, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834877543637709, authorId=1166063065071543176, language=EN, stringName=Lance A. Davis, firstName=Lance A., middleName=null, lastName=Davis, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Advisor, US National Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166063065339978635, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834877543637709, authorId=1166063065071543176, language=CN, stringName=Lance A. Davis, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Advisor, US National Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Lance A. Davis

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research
    Developments and Prospects of Long-Span High-Speed Railway Bridge Technologies in China
    [Author(id=1166062486567969458, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834178906808966, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=qinshq@cae.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166062486702187188, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834178906808966, authorId=1166062486567969458, language=EN, stringName=Shunquan Qin, firstName=Shunquan, middleName=null, lastName=Qin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=*, address=China Railway Major Bridge Reconnaissance and Design Institute Co., Ltd., Wuhan 430050, ChinaChina Railway Major Bridge Reconnaissance and Design Institute Co., Ltd., Wuhan 430050, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062486807044789, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834178906808966, authorId=1166062486567969458, language=CN, stringName=秦顺全, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=*, address=China Railway Major Bridge Reconnaissance and Design Institute Co., Ltd., Wuhan 430050, ChinaChina Railway Major Bridge Reconnaissance and Design Institute Co., Ltd., Wuhan 430050, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062486903513783, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834178906808966, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062487037731513, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834178906808966, authorId=1166062486903513783, language=EN, stringName=Zongyu Gao, firstName=Zongyu, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=China Railway Major Bridge Reconnaissance and Design Institute Co., Ltd., Wuhan 430050, ChinaChina Railway Major Bridge Reconnaissance and Design Institute Co., Ltd., Wuhan 430050, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062487142589114, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834178906808966, authorId=1166062486903513783, language=CN, stringName=高宗余, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=China Railway Major Bridge Reconnaissance and Design Institute Co., Ltd., Wuhan 430050, ChinaChina Railway Major Bridge Reconnaissance and Design Institute Co., Ltd., Wuhan 430050, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Shunquan Qin , Zongyu Gao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Fatigue Strength Evaluation of Resin-Injected Bolted Connections Using Statistical Analysis
    [Author(id=1166063010734334654, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=jacorreia@inegi.up.pt, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166063010897912515, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, authorId=1166063010734334654, language=EN, stringName=José António Fonseca de Oliveira Correia, firstName=José, middleName=null, lastName=António Fonseca de Oliveira Correia, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=aFaculty of Engineering, University of Porto, Porto 4200-465, Portugal
    bInstitute for Sustainability and Innovation in Structural Engineering (ISISE), Department of Civil Engineering, University of Coimbra, Coimbra 3030-788, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166063010994381510, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063011132793545, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, authorId=1166063010994381510, language=EN, stringName=Bruno Alexandre Silva Pedrosa, firstName=Bruno, middleName=null, lastName=Alexandre Silva Pedrosa, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bInstitute for Sustainability and Innovation in Structural Engineering (ISISE), Department of Civil Engineering, University of Coimbra, Coimbra 3030-788, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166063011229262540, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063011363480271, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, authorId=1166063011229262540, language=EN, stringName=Patrícia Cordeiro Raposo, firstName=Patrícia, middleName=null, lastName=Cordeiro Raposo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aFaculty of Engineering, University of Porto, Porto 4200-465, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166063011464143570, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063011594166996, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, authorId=1166063011464143570, language=EN, stringName=Abílio Manuel Pinho De Jesus, firstName=Abílio, middleName=null, lastName=Manuel Pinho De Jesus, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aFaculty of Engineering, University of Porto, Porto 4200-465, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166063011694830294, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063011829048024, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, authorId=1166063011694830294, language=EN, stringName=Helena Maria dos Santos Gervásio, firstName=Helena, middleName=null, lastName=Maria dos Santos Gervásio, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bInstitute for Sustainability and Innovation in Structural Engineering (ISISE), Department of Civil Engineering, University of Coimbra, Coimbra 3030-788, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166063011929711322, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063012059734749, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, authorId=1166063011929711322, language=EN, stringName=Grzegorz Stanisław Lesiuk, firstName=Grzegorz, middleName=null, lastName=Stanisław Lesiuk, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=cDepartment of Mechanics, Materials Science and Engineering, Faculty of Mechanical Engineering, Wrocław University of Technology, Wrocław 50-370, Poland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166063012160398047, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063012294615777, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, authorId=1166063012160398047, language=EN, stringName=Carlos Alberto da Silva Rebelo, firstName=Carlos, middleName=null, lastName=Alberto da Silva Rebelo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bInstitute for Sustainability and Innovation in Structural Engineering (ISISE), Department of Civil Engineering, University of Coimbra, Coimbra 3030-788, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166063012395279075, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063012533691109, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, authorId=1166063012395279075, language=EN, stringName=Rui Artur Bartólo Calçada, firstName=Rui, middleName=null, lastName=Artur Bartólo Calçada, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aFaculty of Engineering, University of Porto, Porto 4200-465, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166063012630160103, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063012760183529, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, authorId=1166063012630160103, language=EN, stringName=Luís Alberto Proença Simões da Silva, firstName=Luís, middleName=null, lastName=Alberto Proença Simões da Silva, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bInstitute for Sustainability and Innovation in Structural Engineering (ISISE), Department of Civil Engineering, University of Coimbra, Coimbra 3030-788, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166063013259305713, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={CN=AuthorExt(id=1166063013427077876, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, authorId=1166063013259305713, language=CN, stringName=José António Fonseca de Oliveira Correia, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
    b  Institute for Sustainability and Innovation in Structural Engineering (ISISE), Department of Civil Engineering, University of Coimbra, Coimbra 3030-788, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166063013523546870, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, orderNo=10, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={CN=AuthorExt(id=1166063013624210167, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834622227964737, authorId=1166063013523546870, language=CN, stringName=Bruno Alexandre Silva Pedrosa, Patrícia Cordeiro Raposo, Abílio Manuel Pinho De Jesus, Helena Maria dos Santos Gervásio, Grzegorz Stanis?aw Lesiuk, Carlos Alberto da Silva Rebelo, Rui Artur Bartólo Calçada, Luís Alberto Proença Simões da Silva, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b a a b c b a b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    José António Fonseca de Oliveira Correia , Bruno Alexandre Silva Pedrosa , Patrícia Cordeiro Raposo , Abílio Manuel Pinho De Jesus , Helena Maria dos Santos Gervásio , Grzegorz Stanisław Lesiuk , Carlos Alberto da Silva Rebelo , Rui Artur Bartólo Calçada , Luís Alberto Proença Simões da Silva

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Mechanical Behavior of a Partially Encased Composite Girder with Corrugated Steel Web: Interaction of Shear and Bending
    [Author(id=1166062704462062104, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=frankhejun@163.com, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166062704617251354, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, authorId=1166062704462062104, language=EN, stringName=Jun He, firstName=Jun, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aSchool of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062704734691867, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, authorId=1166062704462062104, language=CN, stringName=贺君, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aSchool of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062704843743773, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062704994738719, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, authorId=1166062704843743773, language=EN, stringName=Sihao Wang, firstName=Sihao, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bDepartment of Bridge Engineering, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062705107984928, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, authorId=1166062704843743773, language=CN, stringName=王思豪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bDepartment of Bridge Engineering, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062705221231138, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062705372226084, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, authorId=1166062705221231138, language=EN, stringName=Yuqing Liu, firstName=Yuqing, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bDepartment of Bridge Engineering, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062705485472293, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, authorId=1166062705221231138, language=CN, stringName=刘玉擎, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bDepartment of Bridge Engineering, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062705598718503, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062705753907753, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, authorId=1166062705598718503, language=EN, stringName=Zhan Lyu, firstName=Zhan, middleName=null, lastName=Lyu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=cDepartment of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062705862959658, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, authorId=1166062705598718503, language=CN, stringName=吕展, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=cDepartment of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062705980400172, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062706131395118, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, authorId=1166062705980400172, language=EN, stringName=Chuanxi Li, firstName=Chuanxi, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062706244641327, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834603752055597, authorId=1166062705980400172, language=CN, stringName=李传习, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jun He , Sihao Wang , Yuqing Liu , Zhan Lyu , Chuanxi Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Wind-Tunnel Investigation of the Aerodynamic Performance of Surface-Modification Cables
    [Author(id=1166062660212154817, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561217618696, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062660346372547, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561217618696, authorId=1166062660212154817, language=EN, stringName=Hiroshi Katsuchi, firstName=Hiroshi, middleName=null, lastName=Katsuchi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Yokohama National University, Yokohama 240-8501, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062660442841540, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561217618696, authorId=1166062660212154817, language=CN, stringName=Hiroshi Katsuchi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Yokohama National University, Yokohama 240-8501, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062660547699142, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561217618696, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062660681916872, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561217618696, authorId=1166062660547699142, language=EN, stringName=Hitoshi Yamada, firstName=Hitoshi, middleName=null, lastName=Yamada, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Yokohama National University, Yokohama 240-8501, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062660778385865, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561217618696, authorId=1166062660547699142, language=CN, stringName=Hitoshi Yamada, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Yokohama National University, Yokohama 240-8501, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062660883243467, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561217618696, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062661017461197, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561217618696, authorId=1166062660883243467, language=EN, stringName=Ippei Sakaki, firstName=Ippei, middleName=null, lastName=Sakaki, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Shinko Wire Company, Ltd., Amagasaki 660-0091, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062661113930190, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561217618696, authorId=1166062660883243467, language=CN, stringName=Ippei Sakaki, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Shinko Wire Company, Ltd., Amagasaki 660-0091, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062661222982096, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561217618696, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062661353005522, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561217618696, authorId=1166062661222982096, language=EN, stringName=Eiichi Okado, firstName=Eiichi, middleName=null, lastName=Okado, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Shinko Wire Company, Ltd., Amagasaki 660-0091, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062661453668819, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561217618696, authorId=1166062661222982096, language=CN, stringName=Eiichi Okado, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Shinko Wire Company, Ltd., Amagasaki 660-0091, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hiroshi Katsuchi , Hitoshi Yamada , Ippei Sakaki , Eiichi Okado

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Comparative Assessment of Aerodynamic Models for Buffeting and Flutter of Long-Span Bridges
    [Author(id=1166063285591269798, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835023778046008, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063285725487528, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835023778046008, authorId=1166063285591269798, language=EN, stringName=Igor Kavrakov, firstName=Igor, middleName=null, lastName=Kavrakov, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Research Training Group 1462, Bauhaus-University Weimar, Weimar 99423, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166063285826150825, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835023778046008, authorId=1166063285591269798, language=CN, stringName=Igor Kavrakov, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Research Training Group 1462, Bauhaus-University Weimar, Weimar 99423, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166063285922619819, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835023778046008, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063286056837549, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835023778046008, authorId=1166063285922619819, language=EN, stringName=Guido Morgenthal, firstName=Guido, middleName=null, lastName=Morgenthal, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Chair of Modeling and Simulation of Structures, Bauhaus-University Weimar, Weimar 99423, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166063286157500846, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835023778046008, authorId=1166063285922619819, language=CN, stringName=Guido Morgenthal, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Chair of Modeling and Simulation of Structures, Bauhaus-University Weimar, Weimar 99423, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Igor Kavrakov , Guido Morgenthal

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Damping Identification of Bridges Under Nonstationary Ambient Vibration
    [Author(id=1166062527592456369, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834201384084131, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062527722479795, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834201384084131, authorId=1166062527592456369, language=EN, stringName=Sunjoong Kim, firstName=Sunjoong, middleName=null, lastName=Kim, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062527818948788, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834201384084131, authorId=1166062527592456369, language=CN, stringName=Sunjoong Kim, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062527932194998, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834201384084131, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062528066412728, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834201384084131, authorId=1166062527932194998, language=EN, stringName=Ho-Kyung Kim, firstName=Ho-Kyung, middleName=null, lastName=Kim, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062528167076025, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834201384084131, authorId=1166062527932194998, language=CN, stringName=Ho-Kyung Kim, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Sunjoong Kim , Ho-Kyung Kim

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Investigation of Turbulence Effects on the Aeroelastic Properties of a Truss Bridge Deck Section
    [Author(id=1166062786439734149, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834666289128434, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062786552980359, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834666289128434, authorId=1166062786439734149, language=EN, stringName=Hoang Trong Lam, firstName=Hoang Trong, middleName=null, lastName=Lam, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  The University of Danang—University of Science and Technology, Danang, Vietnam, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062786636866440, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834666289128434, authorId=1166062786439734149, language=CN, stringName=Hoang Trong Lam, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  The University of Danang—University of Science and Technology, Danang, Vietnam, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062786724946826, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834666289128434, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062786854970252, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834666289128434, authorId=1166062786724946826, language=EN, stringName=Hiroshi Katsuchi, firstName=Hiroshi, middleName=null, lastName=Katsuchi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Yokohama National University, Yokohama 240-8501, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062786959827853, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834666289128434, authorId=1166062786724946826, language=CN, stringName=Hiroshi Katsuchi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Yokohama National University, Yokohama 240-8501, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062787064685455, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834666289128434, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062787194708881, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834666289128434, authorId=1166062787064685455, language=EN, stringName=Hitoshi Yamada, firstName=Hitoshi, middleName=null, lastName=Yamada, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Yokohama National University, Yokohama 240-8501, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062787295372178, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834666289128434, authorId=1166062787064685455, language=CN, stringName=Hitoshi Yamada, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Yokohama National University, Yokohama 240-8501, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hoang Trong Lam , Hiroshi Katsuchi , Hitoshi Yamada

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Simplified Nonlinear Model of Vertical Vortex-Induced Force on Box Decks for Predicting Stable Amplitudes of Vortex-Induced Vibrations
    [Author(id=1166062517832310855, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834210691244750, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=ledong@tongji.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166062517970722890, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834210691244750, authorId=1166062517832310855, language=EN, stringName=Le-Dong Zhu, firstName=Le-Dong, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aState Key Laboratory of Disaster Reduction in Civil Engineering & Department of Bridge Engineering, College of Civil Engineering & Key Laboratory for Wind Resistance Technology of Bridges of Ministry of Transport, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062518083969099, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834210691244750, authorId=1166062517832310855, language=CN, stringName=朱乐东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aState Key Laboratory of Disaster Reduction in Civil Engineering & Department of Bridge Engineering, College of Civil Engineering & Key Laboratory for Wind Resistance Technology of Bridges of Ministry of Transport, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062518193021005, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834210691244750, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062518344015951, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834210691244750, authorId=1166062518193021005, language=EN, stringName=Xiao-Liang Meng, firstName=Xiao-Liang, middleName=null, lastName=Meng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bShanghai Urban Construction Municipal Engineering (Group) Co., Ltd., Shanghai 200065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062518457262160, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834210691244750, authorId=1166062518193021005, language=CN, stringName=孟晓亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bShanghai Urban Construction Municipal Engineering (Group) Co., Ltd., Shanghai 200065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062518570508370, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834210691244750, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062518721503316, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834210691244750, authorId=1166062518570508370, language=EN, stringName=Lin-Qing Du, firstName=Lin-Qing, middleName=null, lastName=Du, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=cTongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062518834749525, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834210691244750, authorId=1166062518570508370, language=CN, stringName=杜林清, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=cTongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062518947995735, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834210691244750, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062519094796377, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834210691244750, authorId=1166062518947995735, language=EN, stringName=Ming-Chang Ding, firstName=Ming-Chang, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=dHighway Planning, Survey, Design and Research Institute, Sichuan Provincial Transport Department, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062519203848284, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834210691244750, authorId=1166062518947995735, language=CN, stringName=丁明畅, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=dHighway Planning, Survey, Design and Research Institute, Sichuan Provincial Transport Department, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Le-Dong Zhu , Xiao-Liang Meng , Lin-Qing Du , Ming-Chang Ding

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Mechanized Tunneling in Soft Soils: Choice of Excavation Mode and Application of Soil-Conditioning Additives in Glacial Deposits
    [Author(id=1166062506549633977, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561817404169, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062506683851707, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561817404169, authorId=1166062506549633977, language=EN, stringName=Rolf Zumsteg, firstName=Rolf, middleName=null, lastName=Zumsteg, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Gruner AG, Basel 4020, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062506792903612, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561817404169, authorId=1166062506549633977, language=CN, stringName=Rolf Zumsteg, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Gruner AG, Basel 4020, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062506893566911, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561817404169, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062507023590337, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561817404169, authorId=1166062506893566911, language=EN, stringName=Lars Langmaack, firstName=Lars, middleName=null, lastName=Langmaack, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Normet International Ltd., Hünenberg 6331, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062507128447938, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834561817404169, authorId=1166062506893566911, language=CN, stringName=Lars Langmaack, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Normet International Ltd., Hünenberg 6331, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Rolf Zumsteg , Lars Langmaack

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Typical Underwater Tunnels in the Mainland of China and Related Tunneling Technologies
    [Author(id=1166062965041586186, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834977275798398, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=ctg_kr@vip.163.com, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166062965192581132, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834977275798398, authorId=1166062965041586186, language=EN, stringName=Kairong Hong, firstName=Kairong, middleName=null, lastName=Hong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=*, address=State Key Laboratory of Shield Machine and Boring Technology, China Railway Tunnel Group Co., Ltd., Zhengzhou 450001, ChinaState Key Laboratory of Shield Machine and Boring Technology, China Railway Tunnel Group Co., Ltd., Zhengzhou 450001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062965297438734, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834977275798398, authorId=1166062965041586186, language=CN, stringName=洪开荣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=*, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Kairong Hong

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Lake Mead Intake No. 3
    [Author(id=1166062480276513408, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834175974990466, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062480423314050, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834175974990466, authorId=1166062480276513408, language=EN, stringName=Jon Hurt, firstName=Jon, middleName=null, lastName=Hurt, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Arup Group Limited, New York, NY 10005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062480540754563, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834175974990466, authorId=1166062480276513408, language=CN, stringName=Jon Hurt, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Arup Group Limited, New York, NY 10005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062480649806470, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834175974990466, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062480800801416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834175974990466, authorId=1166062480649806470, language=EN, stringName=Claudio Cimiotti, firstName=Claudio, middleName=null, lastName=Cimiotti, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  S.A. Healy Company, Salini Impregilo Group, Las Vegas, NV 89074, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062480918241929, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834175974990466, authorId=1166062480649806470, language=CN, stringName=Claudio Cimiotti, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  S.A. Healy Company, Salini Impregilo Group, Las Vegas, NV 89074, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jon Hurt , Claudio Cimiotti

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Universal Method for the Prediction of Abrasive Waterjet Performance in Mining
    [Author(id=1166063099968152551, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834910032716569, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166063100081398761, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834910032716569, authorId=1166063099968152551, language=EN, stringName=Eugene Averin, firstName=Eugene, middleName=null, lastName=Averin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= OOO Skuratovsky Experimental Plant, Tula 300911, Russia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166063100165284842, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834910032716569, authorId=1166063099968152551, language=CN, stringName=Eugene Averin, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= OOO Skuratovsky Experimental Plant, Tula 300911, Russia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Eugene Averin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Closer Look at the Design of Cutterheads for Hard Rock Tunnel-Boring Machines
    [Author(id=1166062992812073407, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834608697140017, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062992984039874, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834608697140017, authorId=1166062992812073407, language=EN, stringName=Jamal Rostami, firstName=Jamal, middleName=null, lastName=Rostami, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Excavation Engineering and Earth Mechanics Institute, Department of Mining Engineering, Colorado School of Mines, Golden, CO 80401, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062993101480389, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834608697140017, authorId=1166062992812073407, language=CN, stringName=Jamal Rostami, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Excavation Engineering and Earth Mechanics Institute, Department of Mining Engineering, Colorado School of Mines, Golden, CO 80401, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166062993218920904, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834608697140017, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166062993374110155, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834608697140017, authorId=1166062993218920904, language=EN, stringName=Soo-Ho Chang, firstName=Soo-Ho, middleName=null, lastName=Chang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Geotechnical Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166062993495744973, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834608697140017, authorId=1166062993218920904, language=CN, stringName=Soo-Ho Chang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Geotechnical Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jamal Rostami , Soo-Ho Chang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Key Technologies and Applications of the Design and Manufacturing of Non-Circular TBMs
    [Author(id=1166063216297173051, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834990030676878, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=lijianbin@crectbm.com, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166063216443973693, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834990030676878, authorId=1166063216297173051, language=EN, stringName=Jianbin Li, firstName=Jianbin, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=*, address=China Railway Hi-Tech Industry Corporation Limited, Beijing 100070, ChinaChina Railway Hi-Tech Industry Corporation Limited, Beijing 100070, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166063216553025598, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159834990030676878, authorId=1166063216297173051, language=CN, stringName=李建斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=*, address=China Railway Hi-Tech Industry Corporation Limited, Beijing 100070, ChinaChina Railway Hi-Tech Industry Corporation Limited, Beijing 100070, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jianbin Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.