2021-12-31 , Volume 7 Issue 12

Cover illustration

  •  

    Climate change is currently the most significant challenge to countries around the world. China plays an important and constructive role in global climate governance. On 22 September 2020, China officially announced its intention to “reach a peak in its carbon dioxide emissions by 2030 and carbon neutrality by 2060.” In this “Carbon Neutrality” special topic, we propose and analyze a peaked carbon emission pathway and possible measures in China towards carbon neutrality while fully considering related factors including economic and social development, technical accessibility, and solution feasibility. We hope to provide a reference for the global to achieve carbon neutrality. The cover shows the China’s first 100 MW-class molten salt tower thermal power station in Dunhuang, Gansu Province. The annual power generation of the molten salt tower thermal power station will reach 3.9 × 108 kW?h, which can reduce carbon dioxide emissions by 3.5 × 105 t per year.

    Download cover

  • Select all
    Editorial
  • Global Top Ten Engineering Achievements 2021
    [Author(id=1166115394198102770, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903220405428305, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115394344903412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903220405428305, authorId=1166115394198102770, language=EN, stringName=Junzhi Cui, firstName=Junzhi, middleName=null, lastName=Cui, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115394453955317, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903220405428305, authorId=1166115394198102770, language=CN, stringName=崔俊芝, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Junzhi Cui

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Biomedical Engineering: Materials, Devices, and Technological Innovation Continue to Build a Better Future for Humankind
    [Author(id=1166115162190177073, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903220405428306, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115162286646066, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903220405428306, authorId=1166115162190177073, language=EN, stringName=Hailing Tu, firstName=Hailing, middleName=null, lastName=Tu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115162408280883, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903220405428306, authorId=1166115162190177073, language=CN, stringName=屠海令, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115162513138485, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903220405428306, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115162613801782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903220405428306, authorId=1166115162513138485, language=EN, stringName=Xingdong Zhang, firstName=Xingdong, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115162718659383, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903220405428306, authorId=1166115162513138485, language=CN, stringName=张兴栋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hailing Tu , Xingdong Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • Nanosheet Chips Poised to Rescue Moore’s Law
    [Author(id=1166116010454606082, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905970627338913, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116010576240900, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905970627338913, authorId=1166116010454606082, language=EN, stringName=Robert Pollie, firstName=Robert, middleName=null, lastName=Pollie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116010668515589, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905970627338913, authorId=1166116010454606082, language=CN, stringName=Robert Pollie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Robert Pollie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Battery Recycling Challenge Looms as Electric Vehicle Business Booms
    [Author(id=1166115935661777888, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905962649772699, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115935800189924, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905962649772699, authorId=1166115935661777888, language=EN, stringName=Sean O'Neill, firstName=Sean, middleName=null, lastName=O'Neill, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115935900853222, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905962649772699, authorId=1166115935661777888, language=CN, stringName=Sean O'Neill, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Sean O'Neill

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Microneedle Makers Seek to Engineer a Better Shot
    [Author(id=1166115949691723835, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906041091646244, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115949817552957, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906041091646244, authorId=1166115949691723835, language=EN, stringName=Peter Weiss, firstName=Peter, middleName=null, lastName=Weiss, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115949914021950, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906041091646244, authorId=1166115949691723835, language=CN, stringName=Peter Weiss, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Peter Weiss

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Engineering Achievements
  • The Intelligent Beijing–Zhangjiakou High-Speed Railway
    [Author(id=1166115212869951490, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903427696320723, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115212995780612, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903427696320723, authorId=1166115212869951490, language=EN, stringName=Tongjun Wang, firstName=Tongjun, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China State Railway Group Corporation Limited, Beijing 100844, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115213092249605, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903427696320723, authorId=1166115212869951490, language=CN, stringName=王同军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China State Railway Group Corporation Limited, Beijing 100844, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Tongjun Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Analysis of a Peaked Carbon Emission Pathway in China Toward Carbon Neutrality
    [Author(id=1166114288965444271, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903267377438816, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114289095467697, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903267377438816, authorId=1166114288965444271, language=EN, stringName=Project Team on the Strategy and Pathway for Peaking Carbon Emissions and Carbon Neutrality, firstName=Project Team on the Strategy and Pathway for Peaking Carbon Emissions and Carbon, middleName=null, lastName=Neutrality, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114289187742386, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903267377438816, authorId=1166114288965444271, language=CN, stringName=“碳达峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114289288405684, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903267377438816, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={CN=AuthorExt(id=1166114289414234806, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903267377438816, authorId=1166114289288405684, language=CN, stringName=碳中和战略及路径”项目组, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Project Team on the Strategy and Pathway for Peaking Carbon Emissions and Carbon Neutrality

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Optimizing the Roadmap to Carbon Neutralization with a New Paradigm
    [Author(id=1166115386933568199, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219637870671, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115387055203017, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219637870671, authorId=1166115386933568199, language=EN, stringName=Wen Lai Huang, firstName=Wen Lai, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115387151672010, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219637870671, authorId=1166115386933568199, language=CN, stringName=黄文来, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115387243946700, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219637870671, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115387365581518, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219637870671, authorId=1166115387243946700, language=EN, stringName=Jinghai Li, firstName=Jinghai, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115387462050511, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219637870671, authorId=1166115387243946700, language=CN, stringName=李静海, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Wen Lai Huang , Jinghai Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Thoughts on the Implementation Path to a Carbon Peak and Carbon Neutrality in China’s Steel Industry
    [Author(id=1166115420051792696, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903307307212919, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115420190204730, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903307307212919, authorId=1166115420051792696, language=EN, stringName=Ruiyu Yin, firstName=Ruiyu, middleName=null, lastName=Yin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Central Iron and Steel Research Institute, China Iron and Steel Research Institute Group, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115420290868027, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903307307212919, authorId=1166115420051792696, language=CN, stringName=殷瑞钰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Central Iron and Steel Research Institute, China Iron and Steel Research Institute Group, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115420391531325, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903307307212919, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115420525749055, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903307307212919, authorId=1166115420391531325, language=EN, stringName=Zhengdong Liu, firstName=Zhengdong, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Central Iron and Steel Research Institute, China Iron and Steel Research Institute Group, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115420626412352, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903307307212919, authorId=1166115420391531325, language=CN, stringName=刘正东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Central Iron and Steel Research Institute, China Iron and Steel Research Institute Group, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115420731269954, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903307307212919, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115420865487684, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903307307212919, authorId=1166115420731269954, language=EN, stringName=Fangqin Shangguan, firstName=Fangqin, middleName=null, lastName=Shangguan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Steel Industry Green and Intelligent Manufacturing Technology Center, China Iron and Steel Research Institute Group, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115420961956677, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903307307212919, authorId=1166115420731269954, language=CN, stringName=上官方钦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Steel Industry Green and Intelligent Manufacturing Technology Center, China Iron and Steel Research Institute Group, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ruiyu Yin , Zhengdong Liu , Fangqin Shangguan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Contemplation on China’s Energy-Development Strategies and Initiatives in the Context of Its Carbon Neutrality Goal
    [Author(id=1166115669596102675, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115669717737493, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115669596102675, language=EN, stringName=Yinao Su, firstName=Yinao, middleName=null, lastName=Su, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Energy and Mining Engineering Division of the Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115669810012182, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115669596102675, language=CN, stringName=苏义脑, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Energy and Mining Engineering Division of the Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115669906481176, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115670036504602, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115669906481176, language=EN, stringName=Houliang Dai, firstName=Houliang, middleName=null, lastName=Dai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China National Petroleum Corporation, Beijing 100007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115670128779291, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115669906481176, language=CN, stringName=戴厚良, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China National Petroleum Corporation, Beijing 100007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115670221053981, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115670342688800, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115670221053981, language=EN, stringName=Lichun Kuang, firstName=Lichun, middleName=null, lastName=Kuang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China National Petroleum Corporation, Beijing 100007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115670443352099, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115670221053981, language=CN, stringName=匡立春, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China National Petroleum Corporation, Beijing 100007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115670531432486, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115670653067306, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115670531432486, language=EN, stringName=Jizhen Liu, firstName=Jizhen, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c North China Electric Power University, Beijing 102206, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115670795673645, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115670531432486, language=CN, stringName=刘吉臻, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c North China Electric Power University, Beijing 102206, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115670887948335, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115671009583156, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115670887948335, language=EN, stringName=Dazhao Gu, firstName=Dazhao, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d China Energy Investment Co., Ltd., Beijing 100011, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115671106052151, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115670887948335, language=CN, stringName=顾大钊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d China Energy Investment Co., Ltd., Beijing 100011, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115671198326843, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115671328350270, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115671198326843, language=EN, stringName=Caineng Zou, firstName=Caineng, middleName=null, lastName=Zou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China National Petroleum Corporation, Beijing 100007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115671416430656, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115671198326843, language=CN, stringName=邹才能, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China National Petroleum Corporation, Beijing 100007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115671512899651, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115671638728775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115671512899651, language=EN, stringName=Haixia Huang, firstName=Haixia, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China National Petroleum Corporation, Beijing 100007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115671731003465, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905965543842461, authorId=1166115671512899651, language=CN, stringName=黄海霞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China National Petroleum Corporation, Beijing 100007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yinao Su , Houliang Dai , Lichun Kuang , Jizhen Liu , Dazhao Gu , Caineng Zou , Haixia Huang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • An Ammonia–Hydrogen Energy Roadmap for Carbon Neutrality: Opportunity and Challenges in China
    [Author(id=1166115667566060528, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905973978587814, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115667662529523, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905973978587814, authorId=1166115667566060528, language=EN, stringName=Lilong Jiang, firstName=Lilong, middleName=null, lastName=Jiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115667758998516, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905973978587814, authorId=1166115667566060528, language=CN, stringName=江莉龙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115667855467510, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905973978587814, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115667960325111, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905973978587814, authorId=1166115667855467510, language=EN, stringName=Xianzhi Fu, firstName=Xianzhi, middleName=null, lastName=Fu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115668069377016, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905973978587814, authorId=1166115667855467510, language=CN, stringName=付贤智, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Lilong Jiang , Xianzhi Fu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • A Comparison of Incentive Policies for the Optimal Layout of CCUS Clusters in China’s Coal-Fired Power Plants Toward Carbon Neutrality
    [Author(id=1166115671076692022, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905990755803828, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115671265435709, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905990755803828, authorId=1166115671076692022, language=EN, stringName=Wenhui Chen, firstName=Wenhui, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China
    b State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115671370293311, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905990755803828, authorId=1166115671076692022, language=CN, stringName=陈文会, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China
    b State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115671479345219, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905990755803828, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115671659700296, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905990755803828, authorId=1166115671479345219, language=EN, stringName=Xi Lu, firstName=Xi, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
    c Beijing Laboratory of Environmental Frontier Technologies, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115671764557898, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905990755803828, authorId=1166115671479345219, language=CN, stringName=鲁玺, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
    c Beijing Laboratory of Environmental Frontier Technologies, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115671873609804, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905990755803828, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115672016216144, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905990755803828, authorId=1166115671873609804, language=EN, stringName=Yalin Lei, firstName=Yalin, middleName=null, lastName=Lei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115672121073745, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905990755803828, authorId=1166115671873609804, language=CN, stringName=雷涯邻, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115672225931348, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905990755803828, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115672372731991, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905990755803828, authorId=1166115672225931348, language=EN, stringName=Jian-Feng Chen, firstName=Jian-Feng, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115672477589593, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905990755803828, authorId=1166115672225931348, language=CN, stringName=陈建峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wenhui Chen , Xi Lu , Yalin Lei , Jian-Feng Chen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • An Outlook on Implantable Biosensors for Personalized Medicine
    [Author(id=1166115179072250765, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219977609296, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166115179240022928, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219977609296, authorId=1166115179072250765, language=EN, stringName=Rita Rebelo, firstName=Rita, middleName=null, lastName=Rebelo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a I3B's Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
    b ICVS/3B’s–PT Government-Associated Laboratory, Braga, Guimarães, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115179365852049, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219977609296, authorId=1166115179072250765, language=CN, stringName=Rita Rebelo, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a I3B's Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
    b ICVS/3B’s–PT Government-Associated Laboratory, Braga, Guimarães, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115179466515347, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219977609296, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166115179634287510, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219977609296, authorId=1166115179466515347, language=EN, stringName=Ana Isabel Barbosa, firstName=Ana Isabel, middleName=null, lastName=Barbosa, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a I3B's Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
    b ICVS/3B’s–PT Government-Associated Laboratory, Braga, Guimarães, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115179739145111, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219977609296, authorId=1166115179466515347, language=CN, stringName=Ana Isabel Barbosa, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a I3B's Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
    b ICVS/3B’s–PT Government-Associated Laboratory, Braga, Guimarães, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115179839808409, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219977609296, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115180003386268, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219977609296, authorId=1166115179839808409, language=EN, stringName=Vitor M. Correlo, firstName=Vitor M., middleName=null, lastName=Correlo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a I3B's Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
    b ICVS/3B’s–PT Government-Associated Laboratory, Braga, Guimarães, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115180108243869, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219977609296, authorId=1166115179839808409, language=CN, stringName=Vitor M. Correlo, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a I3B's Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
    b ICVS/3B’s–PT Government-Associated Laboratory, Braga, Guimarães, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115180213101471, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219977609296, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115180380873634, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219977609296, authorId=1166115180213101471, language=EN, stringName=Rui L. Reis, firstName=Rui L., middleName=null, lastName=Reis, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a I3B's Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
    b ICVS/3B’s–PT Government-Associated Laboratory, Braga, Guimarães, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115180481536931, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903219977609296, authorId=1166115180213101471, language=CN, stringName=Rui L. Reis, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a I3B's Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
    b ICVS/3B’s–PT Government-Associated Laboratory, Braga, Guimarães, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Rita Rebelo , Ana Isabel Barbosa , Vitor M. Correlo , Rui L. Reis

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Biodegradable Materials and the Tissue Engineering of Nerves
    [Author(id=1166115934042776521, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905994526483135, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115934189577163, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905994526483135, authorId=1166115934042776521, language=EN, stringName=Xiaosong Gu, firstName=Xiaosong, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115934302823372, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905994526483135, authorId=1166115934042776521, language=CN, stringName=顾晓松, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xiaosong Gu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Machine Learning and Medical Devices: The Next Step for Tissue Engineering
    [Author(id=1166114838025003636, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903266555355231, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114838163415670, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903266555355231, authorId=1166114838025003636, language=EN, stringName=Hannah A. Pearce, firstName=Hannah A., middleName=null, lastName=Pearce, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Bioengineering, Rice University, Houston, TX, 77030, United States, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114838259884664, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903266555355231, authorId=1166114838025003636, language=CN, stringName=Hannah A. Pearce, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Bioengineering, Rice University, Houston, TX, 77030, United States, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114838356353659, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903266555355231, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114838482182782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903266555355231, authorId=1166114838356353659, language=EN, stringName=Antonios G. Mikos, firstName=Antonios G., middleName=null, lastName=Mikos, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Bioengineering, Rice University, Houston, TX, 77030, United States, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114838578651776, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903266555355231, authorId=1166114838356353659, language=CN, stringName=Antonios G. Mikos, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Bioengineering, Rice University, Houston, TX, 77030, United States, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hannah A. Pearce , Antonios G. Mikos

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research and Progress of Implantable Cardiovascular Materials and Devices
    [Author(id=1166115903264973602, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905896782422614, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115903403385636, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905896782422614, authorId=1166115903264973602, language=EN, stringName=Yunbing Wang, firstName=Yunbing, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115903508243237, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905896782422614, authorId=1166115903264973602, language=CN, stringName=王云兵, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yunbing Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Current Challenges for the Practical Application of Electroencephalography-Based Brain–Computer Interfaces
    [Author(id=1166115908310721341, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115908491076416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, authorId=1166115908310721341, language=EN, stringName=Minpeng Xu, firstName=Minpeng, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
    b Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115908600128321, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, authorId=1166115908310721341, language=CN, stringName=许敏鹏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
    b Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115908717568835, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115908902118214, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, authorId=1166115908717568835, language=EN, stringName=Feng He, firstName=Feng, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
    b Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115909015364423, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, authorId=1166115908717568835, language=CN, stringName=何峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
    b Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115909124416329, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115909342520141, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, authorId=1166115909124416329, language=EN, stringName=Tzyy-Ping Jung, firstName=Tzyy-Ping, middleName=null, lastName=Jung, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
    b Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
    c Swartz Center for Computational Neuroscience, University of California, San Diego, CA 92093, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115909451572046, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, authorId=1166115909124416329, language=CN, stringName=钟子平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
    b Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
    c Swartz Center for Computational Neuroscience, University of California, San Diego, CA 92093, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115909556429648, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115909736784723, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, authorId=1166115909556429648, language=EN, stringName=Xiaosong Gu, firstName=Xiaosong, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=b Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
    d Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115909845836628, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, authorId=1166115909556429648, language=CN, stringName=顾晓松, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=b Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
    d Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115909954888534, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115910135243609, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, authorId=1166115909954888534, language=EN, stringName=Dong Ming, firstName=Dong, middleName=null, lastName=Ming, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
    b Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115910248489818, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905903065490007, authorId=1166115909954888534, language=CN, stringName=明东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
    b Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Minpeng Xu , Feng He , Tzyy-Ping Jung , Xiaosong Gu , Dong Ming

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Adult Mammalian Neurogenesis: Hopes and Challenges in the Repair of Spinal Cord Injury
    [Author(id=1166115984022102181, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115984177291431, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115984022102181, language=EN, stringName=Zhaoyang Yang, firstName=Zhaoyang, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115984273760424, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115984022102181, language=CN, stringName=杨朝阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115984366035114, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115984491864236, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115984366035114, language=EN, stringName=Wen Zhao, firstName=Wen, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115984588333229, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115984366035114, language=CN, stringName=赵文, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115984684802223, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115984810631345, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115984684802223, language=EN, stringName=Yudan Gao, firstName=Yudan, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115984911294642, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115984684802223, language=CN, stringName=高钰丹, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115985011957940, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115985137787062, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115985011957940, language=EN, stringName=Hongmei Duan, firstName=Hongmei, middleName=null, lastName=Duan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115985246838967, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115985011957940, language=CN, stringName=段红梅, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115985343307961, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115985469137083, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115985343307961, language=EN, stringName=Peng Hao, firstName=Peng, middleName=null, lastName=Hao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115985565606076, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115985343307961, language=CN, stringName=郝鹏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115985657880766, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115985817264321, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115985657880766, language=EN, stringName=Fei Hao, firstName=Fei, middleName=null, lastName=Hao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
    c Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115985917927618, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115985657880766, language=CN, stringName=郝飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
    c Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115986010202308, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115986198945992, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115986010202308, language=EN, stringName=Xiaoguang Li, firstName=Xiaoguang, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China
    b Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
    c Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115986299609289, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159905943741850259, authorId=1166115986010202308, language=CN, stringName=李晓光, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing 100069, China
    b Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
    c Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Zhaoyang Yang , Wen Zhao , Yudan Gao , Hongmei Duan , Peng Hao , Fei Hao , Xiaoguang Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Article
    Gut Microbiota Community Shift with Severity of Coronary Artery Disease
    [Author(id=1166115713434968370, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166115713569186100, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115713434968370, language=EN, stringName=Jia-Lu Hu, firstName=Jia-Lu, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115713669849397, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115713434968370, language=CN, stringName=胡嘉禄, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115713774706999, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166115713908924729, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115713774706999, language=EN, stringName=Zhi-Feng Yao, firstName=Zhi-Feng, middleName=null, lastName=Yao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115714009588026, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115713774706999, language=CN, stringName=姚志峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115714118639932, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166115714248663358, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115714118639932, language=EN, stringName=Min-Na Tang, firstName=Min-Na, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115714349326655, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115714118639932, language=CN, stringName=唐敏娜, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115714454184257, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166115714592596291, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115714454184257, language=EN, stringName=Chun Tang, firstName=Chun, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115714689065284, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115714454184257, language=CN, stringName=唐春, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115714802311494, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115714936529224, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115714802311494, language=EN, stringName=Xiao-Fan Zhao, firstName=Xiao-Fan, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115715037192521, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115714802311494, language=CN, stringName=赵晓璠, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115715142050123, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115715276267853, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115715142050123, language=EN, stringName=Xi Su, Dan-Bo Lu, firstName=Xi Su, Dan-Bo, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115715381125454, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115715142050123, language=CN, stringName=苏曦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115715494371664, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115715628589394, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115715494371664, language=EN, stringName=Qiu-Rong Li, firstName=Qiu-Rong, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115715733446995, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115715494371664, language=CN, stringName=卢淡泊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115715829915989, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115715964133719, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115715829915989, language=EN, stringName=Zhang-Sheng Wang, firstName=Zhang-Sheng, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115716068991320, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115715829915989, language=CN, stringName=李秋荣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115716165460314, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115716299678044, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115716165460314, language=EN, stringName=Yan Yan, firstName=Yan, middleName=null, lastName=Yan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Cardiology, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115716404535645, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115716165460314, language=CN, stringName=王张生, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Cardiology, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115716505198943, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115716639416673, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115716505198943, language=EN, stringName=Zeneng Wang, firstName=Zeneng, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115716744274274, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115716505198943, language=CN, stringName=颜彦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115716844937572, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, orderNo=10, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={CN=AuthorExt(id=1166115716979155302, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906146796495777, authorId=1166115716844937572, language=CN, stringName=王则能, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jia-Lu Hu , Zhi-Feng Yao , Min-Na Tang , Chun Tang , Xiao-Fan Zhao , Xi Su, Dan-Bo Lu , Qiu-Rong Li , Zhang-Sheng Wang , Yan Yan , Zeneng Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Expanding the Scope of Multivariate Regression Approaches in Cross-Omics Research
    [Author(id=1166114765761339668, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114765945889047, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, authorId=1166114765761339668, language=EN, stringName=Xiaoxi Hu, firstName=Xiaoxi, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    b Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114766054940952, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, authorId=1166114765761339668, language=CN, stringName=Xiaoxi Hu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    b Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114766163992858, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114766361125154, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, authorId=1166114766163992858, language=EN, stringName=Yue Ma, firstName=Yue, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    c University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114766465982758, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, authorId=1166114766163992858, language=CN, stringName=Yue Ma, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    c University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114766579228970, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114766755389743, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, authorId=1166114766579228970, language=EN, stringName=Yakun Xu, firstName=Yakun, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    c University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114766860247346, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, authorId=1166114766579228970, language=CN, stringName=Yakun Xu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    c University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114766965104949, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114767141265722, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, authorId=1166114766965104949, language=EN, stringName=Peiyao Zhao, firstName=Peiyao, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, d, address=a CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    d Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109-2029, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114767250317629, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, authorId=1166114766965104949, language=CN, stringName=Peiyao Zhao, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, d, address=a CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    d Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109-2029, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114767359369536, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114767535530310, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, authorId=1166114767359369536, language=EN, stringName=Jun Wang, firstName=Jun, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    c University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114767644582217, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904138937032972, authorId=1166114767359369536, language=CN, stringName=Jun Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    c University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xiaoxi Hu , Yue Ma , Yakun Xu , Peiyao Zhao , Jun Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    A Laser Scanner–Stage Synchronized System Supporting the Large-Area Precision Polishing of Additive-Manufactured Metallic Surfaces
    [Author(id=1166114714947347422, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903948586935177, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166114715081565152, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903948586935177, authorId=1166114714947347422, language=EN, stringName=Mengjia Cui, firstName=Mengjia, middleName=null, lastName=Cui, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory of Tribology & Institute of Manufacturing Engineering, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114715186422753, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903948586935177, authorId=1166114714947347422, language=CN, stringName=崔梦嘉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory of Tribology & Institute of Manufacturing Engineering, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114715303863267, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903948586935177, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166114715442275301, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903948586935177, authorId=1166114715303863267, language=EN, stringName=Libin Lu, firstName=Libin, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114715547132902, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903948586935177, authorId=1166114715303863267, language=CN, stringName=卢立斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114715647796200, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903948586935177, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114715819762667, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903948586935177, authorId=1166114715647796200, language=EN, stringName=Zhen Zhang, firstName=Zhen, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a State Key Laboratory of Tribology & Institute of Manufacturing Engineering, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
    c Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114715920425964, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903948586935177, authorId=1166114715647796200, language=CN, stringName=张震, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a State Key Laboratory of Tribology & Institute of Manufacturing Engineering, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
    c Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114716029477870, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903948586935177, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114716268553203, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903948586935177, authorId=1166114716029477870, language=EN, stringName=Yingchun Guan, firstName=Yingchun, middleName=null, lastName=Guan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, e, f, address=b School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China
    d National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beihang University, Beijing 100083, China
    e International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100083, China
    f Advanced Manufacturing Center, Ningbo Institute of Technology, Beihang University, Ningbo 315100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114716369216500, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903948586935177, authorId=1166114716029477870, language=CN, stringName=管迎春, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, e, f, address=b School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China
    d National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beihang University, Beijing 100083, China
    e International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100083, China
    f Advanced Manufacturing Center, Ningbo Institute of Technology, Beihang University, Ningbo 315100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Mengjia Cui , Libin Lu , Zhen Zhang , Yingchun Guan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    A Comparative Study of Friction Self-Piercing Riveting and Self-Piercing Riveting of Aluminum Alloy AA5182-O
    [Author(id=1166114458822172698, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114459023499294, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, authorId=1166114458822172698, language=EN, stringName=Yunwu Ma, firstName=Yunwu, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    c Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114459119968287, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, authorId=1166114458822172698, language=CN, stringName=马运五, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    c Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114459216437281, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114459380015140, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, authorId=1166114459216437281, language=EN, stringName=He Shan, firstName=He, middleName=null, lastName=Shan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114459480678437, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, authorId=1166114459216437281, language=CN, stringName=山河, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114459577147431, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114459736530986, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, authorId=1166114459577147431, language=EN, stringName=Sizhe Niu, firstName=Sizhe, middleName=null, lastName=Niu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114459837194283, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, authorId=1166114459577147431, language=CN, stringName=牛嗣哲, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114459929468973, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114460093046832, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, authorId=1166114459929468973, language=EN, stringName=Yongbing Li, firstName=Yongbing, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, , address=a Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114460189515825, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, authorId=1166114459929468973, language=CN, stringName=李永兵, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, , address=a Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114460285984819, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114460449562678, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, authorId=1166114460285984819, language=EN, stringName=Zhongqin Lin, firstName=Zhongqin, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114460546031671, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, authorId=1166114460285984819, language=CN, stringName=林忠钦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114460642500665, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114460768329787, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, authorId=1166114460642500665, language=EN, stringName=Ninshu Ma, firstName=Ninshu, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114460868993084, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904046700093568, authorId=1166114460642500665, language=CN, stringName=Ninshu Ma, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yunwu Ma , He Shan , Sizhe Niu , Yongbing Li , Zhongqin Lin , Ninshu Ma

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    A Hybrid Neural Network Model for Marine Dissolved Oxygen Concentrations Time-Series Forecasting Based on Multi-Factor Analysis and a Multi-Model Ensemble
    [Author(id=1166114786657362394, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904203571257711, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114786795774428, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904203571257711, authorId=1166114786657362394, language=EN, stringName=Hui Liu, firstName=Hui, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114786892243421, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904203571257711, authorId=1166114786657362394, language=CN, stringName=刘辉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114786997101023, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904203571257711, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114787131318753, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904203571257711, authorId=1166114786997101023, language=EN, stringName=Rui Yang, firstName=Rui, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114787231982050, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904203571257711, authorId=1166114786997101023, language=CN, stringName=杨睿, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114787336839652, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904203571257711, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114787471057382, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904203571257711, authorId=1166114787336839652, language=EN, stringName=Zhu Duan, firstName=Zhu, middleName=null, lastName=Duan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114787571720679, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904203571257711, authorId=1166114787336839652, language=CN, stringName=段铸, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114787676578281, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904203571257711, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114787810796011, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904203571257711, authorId=1166114787676578281, language=EN, stringName=Haiping Wu, firstName=Haiping, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114787915653612, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904203571257711, authorId=1166114787676578281, language=CN, stringName=吴海平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hui Liu , Rui Yang , Zhu Duan , Haiping Wu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    A Numerical Convex Lens for the State-Discretized Modeling and Simulation of Megawatt Power Electronics Systems as Generalized Hybrid Systems
    [Author(id=1166115352288617056, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115352414446178, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, authorId=1166115352288617056, language=EN, stringName=Bochen Shi, firstName=Bochen, middleName=null, lastName=Shi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115352515109475, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, authorId=1166115352288617056, language=CN, stringName=施博辰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115352607384165, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115352733213287, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, authorId=1166115352607384165, language=EN, stringName=Zhengming Zhao, firstName=Zhengming, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115352825487976, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, authorId=1166115352607384165, language=CN, stringName=赵争鸣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115352921956970, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115353047786092, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, authorId=1166115352921956970, language=EN, stringName=Yicheng Zhu, firstName=Yicheng, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115353140060781, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, authorId=1166115352921956970, language=CN, stringName=朱义诚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115353236529775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115353362358897, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, authorId=1166115353236529775, language=EN, stringName=Zhujun Yu, firstName=Zhujun, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115353454633586, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, authorId=1166115353236529775, language=CN, stringName=虞竹珺, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115353551102580, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115353672737398, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, authorId=1166115353551102580, language=EN, stringName=Jiahe Ju, firstName=Jiahe, middleName=null, lastName=Ju, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115353769206391, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904097014964397, authorId=1166115353551102580, language=CN, stringName=鞠佳禾, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Bochen Shi , Zhengming Zhao , Yicheng Zhu , Zhujun Yu , Jiahe Ju

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Hierarchically Inverse Opal Porous Scaffolds from Droplet Microfluidics for Biomimetic 3D Cell Co-Culture
    [Author(id=1166115461457961041, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115461663481941, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, authorId=1166115461457961041, language=EN, stringName=Changmin Shao, firstName=Changmin, middleName=null, lastName=Shao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Department of Rheumatology and Immunology, Institute of Translational Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
    b Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325038, China
    c Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115461768339542, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, authorId=1166115461457961041, language=CN, stringName=邵长敏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Department of Rheumatology and Immunology, Institute of Translational Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
    b Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325038, China
    c Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115461869002840, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115461999026266, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, authorId=1166115461869002840, language=EN, stringName=Yuxiao Liu, firstName=Yuxiao, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115462103883867, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, authorId=1166115461869002840, language=CN, stringName=刘羽霄, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115462204547165, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115462334570591, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, authorId=1166115462204547165, language=EN, stringName=Junjie Chi, firstName=Junjie, middleName=null, lastName=Chi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115462439428192, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, authorId=1166115462204547165, language=CN, stringName=池俊杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115462540091490, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115462741418086, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, authorId=1166115462540091490, language=EN, stringName=Fangfu Ye, firstName=Fangfu, middleName=null, lastName=Ye, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, e, address=b Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325038, China
    c Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325016, China
    e Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115462846275687, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, authorId=1166115462540091490, language=CN, stringName=叶方富, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, e, address=b Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325038, China
    c Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325016, China
    e Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115462942744681, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115463144071277, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, authorId=1166115462942744681, language=EN, stringName=Yuanjin Zhao, firstName=Yuanjin, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=a Department of Rheumatology and Immunology, Institute of Translational Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
    b Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325038, China
    d State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115463244734574, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903431815127252, authorId=1166115462942744681, language=CN, stringName=赵远锦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=a Department of Rheumatology and Immunology, Institute of Translational Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
    b Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325038, China
    d State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Changmin Shao , Yuxiao Liu , Junjie Chi , Fangfu Ye , Yuanjin Zhao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in the Frequency Domain
    [Author(id=1166114512953860416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904247150076386, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114513079689538, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904247150076386, authorId=1166114512953860416, language=EN, stringName=Qianyun Zhang, firstName=Qianyun, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114513176158531, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904247150076386, authorId=1166114512953860416, language=CN, stringName=Qianyun Zhang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114513268433221, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904247150076386, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114513394262343, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904247150076386, authorId=1166114513268433221, language=EN, stringName=Kaveh Barri, firstName=Kaveh, middleName=null, lastName=Barri, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114513490731336, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904247150076386, authorId=1166114513268433221, language=CN, stringName=Kaveh Barri, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114513587200330, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904247150076386, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114513725612364, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904247150076386, authorId=1166114513587200330, language=EN, stringName=Saeed K. Babanajad, firstName=Saeed K., middleName=null, lastName=Babanajad, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Wiss, Janney, Elstner Associates (WJE) Inc., Northbrook, IL 60062, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114513834664269, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904247150076386, authorId=1166114513587200330, language=CN, stringName=Saeed K. Babanajad, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Wiss, Janney, Elstner Associates (WJE) Inc., Northbrook, IL 60062, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166114513935327567, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904247150076386, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166114514103099730, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904247150076386, authorId=1166114513935327567, language=EN, stringName=Amir H. Alavi, firstName=Amir H., middleName=null, lastName=Alavi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, , address=a Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
    c Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan 41354, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166114514207957331, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159904247150076386, authorId=1166114513935327567, language=CN, stringName=Amir H. Alavi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, , address=a Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
    c Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan 41354, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Qianyun Zhang , Kaveh Barri , Saeed K. Babanajad , Amir H. Alavi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Mechanisms of Steatosis-Derived Hepatocarcinogenesis: Lessons from HCV Core Gene Transgenic Mice
    [Author(id=1166115250979397888, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115251105227010, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115250979397888, language=EN, stringName=Pan Diao, firstName=Pan, middleName=null, lastName=Diao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115251201696003, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115250979397888, language=CN, stringName=Pan Diao, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115251293970693, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115251449159944, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115251293970693, language=EN, stringName=Fangping Jia, firstName=Fangping, middleName=null, lastName=Jia, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
    b State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115251549823241, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115251293970693, language=CN, stringName=Fangping Jia, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
    b State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115251637903627, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115251793092878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115251637903627, language=EN, stringName=Xiaojing Wang, firstName=Xiaojing, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
    c Department of Gastroenterology, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115251889561871, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115251637903627, language=CN, stringName=Xiaojing Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
    c Department of Gastroenterology, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115251981836561, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115252141220116, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115251981836561, language=EN, stringName=Xiao Hu, firstName=Xiao, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, d, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
    d Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115252237689109, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115251981836561, language=CN, stringName=Xiao Hu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, d, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
    d Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115252329963799, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115252485153050, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115252329963799, language=EN, stringName=Takefumi Kimura, firstName=Takefumi, middleName=null, lastName=Kimura, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, f, address=e Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
    f Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Bethesda, MD, 20892, United States, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115252581622043, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115252329963799, language=CN, stringName=Takefumi Kimura, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, f, address=e Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
    f Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Bethesda, MD, 20892, United States, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115252673896733, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115252799725855, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115252673896733, language=EN, stringName=Takero Nakajima, firstName=Takero, middleName=null, lastName=Nakajima, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115252896194848, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115252673896733, language=CN, stringName=Takero Nakajima, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115252988469538, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115253114298660, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115252988469538, language=EN, stringName=Toshifumi Aoyama, firstName=Toshifumi, middleName=null, lastName=Aoyama, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115253206573349, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115252988469538, language=CN, stringName=Toshifumi Aoyama, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115253303042343, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115253424677161, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115253303042343, language=EN, stringName=Kyoji Moriya, firstName=Kyoji, middleName=null, lastName=Moriya, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=g, address=g Department of Infection Control and Prevention, The University of Tokyo, Tokyo 113-0033, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115253516951850, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115253303042343, language=CN, stringName=Kyoji Moriya, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=g, address=g Department of Infection Control and Prevention, The University of Tokyo, Tokyo 113-0033, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115253613420844, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115253735055662, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115253613420844, language=EN, stringName=Kazuhiko Koike, firstName=Kazuhiko, middleName=null, lastName=Koike, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=h, address=h Department of Gastroenterology, The University of Tokyo, Tokyo 113-0033, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115253831524655, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115253613420844, language=CN, stringName=Kazuhiko Koike, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=h, address=h Department of Gastroenterology, The University of Tokyo, Tokyo 113-0033, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166115253923799345, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166115254108348725, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115253923799345, language=EN, stringName=Naoki Tanaka, firstName=Naoki, middleName=null, lastName=Tanaka, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, i, j, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
    i International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
    j Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166115254200623414, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159903573553242543, authorId=1166115253923799345, language=CN, stringName=Naoki Tanaka, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, i, j, address=a Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
    i International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
    j Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Pan Diao , Fangping Jia , Xiaojing Wang , Xiao Hu , Takefumi Kimura , Takero Nakajima , Toshifumi Aoyama , Kyoji Moriya , Kazuhiko Koike , Naoki Tanaka

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.