Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 6 doi: 10.15302/J-SSCAE-2023.06.019

Development of Electrochemical Energy Storage Technology

1. Advanced Technology Research Institute of Beijing Institute of Technology, Jinan 250300, China

2. School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China

Funding project:National Key R&D Program of China (2022YFB2502102); Beijing Outstanding Young Scientists Program (BJJWZYJH01201910007023); Shandong Provincial Central Leading Local Science and Technology Development Fund Project (YDZX2023049) Received: 2023-07-28 Revised: 2023-10-30 Available online: 2023-11-20

Next Previous

Abstract

As an important component of the new power system, electrochemical energy storage is crucial for addressing the challenge regarding high-proportion consumption of renewable energies and for promoting the coordinated operation of the source, grid, load, and storage sides. As a mainstream technology for energy storage and a core technology for the green and low-carbon transformation of existing energy structures, the electrochemical energy storage technology still needs to be further developed to adapt to the challenges brought about by the rapid growth of energy storage scale and the increasingly complex energy storage system. This study analyzes the demand for electrochemical energy storage from the power supply, grid, and user sides, and reviews the research progress of the electrochemical energy storage technology in terms of strategic layout, key materials, and structural design. Moreover, it clarifies the development trend of electrochemical energy storage technologies and identifies the problems such as inconsistency in product specifications, deficiency in detection platforms, and disconnection between theory and practice. Future efforts need to focus on the following directions: key materials with high performance, high safety, and low cost; optimization and evaluation of the structures of energy storage devices; multi-energy complementary and intelligent design of the energy storage systems; and commercial application modes of electrochemical energy storage. Furthermore, it is necessary to strengthen pilot demonstrations, formulate an industry standards system, improve the infrastructure, and cultivate talent teams for energy storage, thereby ensuring the high-quality development of the electrochemical energy storage technologies and industry.

Figures

图1

References

[ 1 ] 郑琼, 江丽霞, 徐玉杰, 等‍‍. 碳达峰、碳中和背景下储能技术研究进展与发展建议 [J]‍. 中国科学院院刊, 2022, 37(4): 529‒540‍.
Zheng Q, Jiang L X, Xu Y J, et al‍. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality [J]‍. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 529‒540‍.

[ 2 ] Jiang P K, Huang X Y‍. Editorial: Dielectric materials for electrical energy storage [J]‍. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 675‍.

[ 3 ] 成润婷, 张勇军, 李立浧, 等‍. 面向高比例可再生能源消纳的电力市场建设及研究进展 [J]‍. 中国工程科学, 2023, 25(2): 89‒99‍.
Cheng R T, Zhang Y J, Li L C, et al‍. Construction and research progress of electricity market for high-proportion renewable energy consumption [J]‍. Strategic Study of CAE, 2023, 25(2): 89‒99‍.

[ 4 ] 任景, 周鑫, 薛晨, 等‍. 发用两侧参与调峰的现货市场联合出清模式设计 [J]‍. 电力工程技术, 2022, 41(1): 26‒33‍.
Ren J, Zhou X, Xue C, et al‍. Spot market joint clearing mode with both sides of generation and customer participating in peak regulation [J]‍. Electric Power Engineering Technology, 2022, 41(1): 26‒33‍.

[ 5 ] 武强, 涂坤, 曾一凡‍. "双碳" 目标愿景下我国能源战略形势若干问题思考 [J]‍. 科学通报, 2023, 68(15): 1884‒1898‍.
Wu Q, Tu K, Zeng Y F‍. Research on China´s energy strategic situation under the carbon peaking and carbon neutrality goals [J]‍. Chinese Science Bulletin, 2023, 68(15): 1884‒1898‍.

[ 6 ] 齐宁, 程林, 田立亭, 等‍. 考虑柔性负荷接入的配电网规划研究综述与展望 [J]‍. 电力系统自动化, 2020, 44(10): 193‒207‍.
Qi N, Cheng L, Tian L T, et al‍. Review and prospect of distribution network planning research considering access of flexible load [J]‍. Automation of Electric Power Systems, 2020, 44(10): 193‒207‍.

[ 7 ] 张智刚, 康重庆‍. 碳中和目标下构建新型电力系统的挑战与展望 [J]‍. 中国电机工程学报, 2022, 42(8): 2806‒2819‍.
Zhang Z G, Kang C Q‍. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future [J]‍. Proceedings of the CSEE, 2022, 42(8): 2806‒2819‍.

[ 8 ] 李晓宇, 吴果莲, 苑秀娥, 等‍. 可再生能源发电侧储能项目经济评价研究 [J]‍. 电力科学与工程, 2023, 39(8): 41‒52‍.
Li X Y, Wu G L, Yuan X E, et al‍. Research on economic evaluation of renewable energy generation side energy storage projects [J]‍. Electric Power Science and Engineering, 2023, 39(8): 41‒52‍.

[ 9 ] 汤广福, 周静, 庞辉, 等‍. 能源安全格局下新型电力系统发展战略框架 [J]‍. 中国工程科学, 2023, 25(2): 79‒88‍.
Tang G F, Zhou J, Pang H, et al‍. Strategic framework for new electric power system development under the energy security pattern [J]‍. Strategic Study of CAE, 2023, 25(2): 79‒88‍.

[10] Su Y N, Dai H L, Kuang L Q, et al‍. Contemplation on China´s energy-development strategies and initiatives in the context of its carbon neutrality goal [J]‍. Engineering, 2021, 7(12): 1684‒1687‍.

[11] Fichtner M, Edström K, Ayerbe E, et al‍. Rechargeable batteries of the future—The state of the art from a BATTERY 2030+ perspective [J]‍. Advanced Energy Materials, 2022, 12(17): 2102904‍.

[12] 史冬梅, 王晶‍. 中国、日本、韩国电池技术和产业发展战略态势分析 [J]‍. 储能科学与技术, 2023, 12(2): 615‒628‍.
Shi D M, Wang J‍. Analysis of battery technology and industry development strategy and trend in China, Japan, and South Korea [J]‍. Energy Storage Science and Technology, 2023, 12(2): 615‒628‍.

[13] 黄学杰, 赵文武, 邵志刚, 等‍. 我国新型能源材料发展战略研究 [J]‍. 中国工程科学, 2020, 22(5): 60‒67‍.
Huang X J, Zhao W W, Shao Z G, et al‍. Development strategies for new energy materials in China [J]‍. Strategic Study of CAE, 2020, 22(5): 60‒67‍.

[14] Ryu H H, Lim H W, Kang G C, et al‍. Long-lasting Ni-rich NCMA cathodes via simultaneous microstructural refinement and surface modification [J]‍. ACS Energy Letters, 2023, 8(3): 1354‒1361‍.

[15] 党荣彬, 陆雅翔, 容晓晖, 等‍. 钠离子电池关键材料研究及工程化探索进展 [J]‍. 科学通报, 2022, 67(30): 3546‒3564‍.
Dang R B, Lu Y X, Rong X H, et al‍. Research progress of key materials and engineering exploration for Na-ion batteries [J]‍. Chinese Science Bulletin, 2022, 67(30): 3546‒3564‍.

[16] Xu S Y, Wu X Y, Li Y M, et al‍. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries [J]‍. Chinese Physics B, 2014, 23(11): 118202‍.

[17] Ding F X, Zhao C L, Zhou D, et al‍. A novel Ni-rich O3-Na[Ni0‍.60Fe0‍.25Mn0‍.15]O2 cathode for Na-ion batteries [J]‍. Energy Storage Materials, 2020, 30: 420‒430‍.

[18] Li Y Q, Zhou Q, Weng S T, et al‍. Interfacial engineering to achieve an energy density of over 200 W·h·kg-1 in sodium batteries [J]‍. Nature Energy, 2022, 7: 511‒519‍.

[19] Chen R J, Zhao T, Wu F‍. From a historic review to horizons beyond: Lithium-sulphur batteries run on the wheels [J]‍. Chemical Communications, 2015, 51(1): 18‒33‍.

[20] Wu F, Ye Y S, Chen R J, et al‍. Gluing carbon black and sulfur at nanoscale: A polydopamine-based "nano-binder" for double-shelled sulfur cathodes [J]‍. Advanced Energy Materials, 2016, 7(3): 1601591‍.

[21] Han M S, Mu Y B, Wei L, et al‍. Multilevel carbon architecture of subnanoscopic silicon for fast-charging high-energy-density lithium-ion batteries [EB/OL]‍. (2023-06-21)[2023-08-15]‍. https: //onlinelibrary‍.wiley‍.com/doi/10‍.1002/cey2‍.377‍.

[22] Li Z S, Zhao Z Y, Pan S Y, et al‍. Covalent coating of micro-sized silicon with dynamically bonded graphene layers toward stably cycled lithium storage [J]‍. Advanced Energy Materials, 2023, 13(28): 2300874‍.

[23] Chen Y, Yang L F, Guo F L, et al‍. Mechanical-electrochemical modeling of silicon-graphite composite anode for lithium-ion batteries [J]‍. Journal of Power Sources, 2022, 527: 231178‍.

[24] Tang Z, Zhang R, Wang H Y, et al‍. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery [J]‍. Nature Communications, 2023, 14: 6024‍.

[25] Liang J W, Chen N, Li X N, et al‍. Li10Ge(P1-xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability [J]‍. Chemistry of Materials, 2020, 32(6): 2664‒2672‍.

[26] Peng J, Wu D X, Jiang Z W, et al‍. Stable interface between sulfide solid electrolyte and room-temperature liquid lithium anode [J]‍. ACS Nano, 2023, 17(13): 12706‒12722‍.

[27] Hu L, Wang J Z, Wang K, et al‍. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries [J]‍. Nature Communications, 2023, 14: 3807‍.

[28] Li Y X, Song S B, Kim H, et al‍. A lithium superionic conductor for millimeter-thick battery electrode [J]‍. Science, 2023, 381(6653): 50‒53‍.

[29] 张华民‍. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望 [J]‍. 储能科学与技术, 2022, 11(9): 2772‒2780‍.
Zhang H M‍. Development, cost analysis considering various durations, and advancement of vanadium flow batteries [J]‍. Energy Storage Science and Technology, 2022, 11(9): 2772‒2780‍.

[30] Wu F, Qian J, Chen R J, et al‍. Sulfur cathode based on layered carbon matrix for high-performance Li-S batteries [J]‍. Nano Energy, 2015, 12: 742‒749‍.

[31] Cheng C Y, Liu H Z, Ouyang C Y, et al‍. A high-temperature stable composite polyurethane separator coated Al2O3 particles for lithium ion battery [J]‍. Composites Communications, 2022, 33: 101217‍.

[32] Xiao J, Shi F F, Glossmann T, et al‍. From laboratory innovations to materials manufacturing for lithium-based batteries [J]‍. Nature Energy, 2023, 8: 329‒339‍.

[33] 刘阳, 滕卫军, 谷青发, 等‍. 规模化多元电化学储能度电成本及其经济性分析 [J]‍. 储能科学与技术, 2023, 12(1): 312‒318‍.
Liu Y, Teng W J, Gu Q F, et al‍. Scaled-up diversified electrochemical energy storage LCOE and its economic analysis [J]‍. Energy Storage Science and Technology, 2023, 12(1): 312‒318‍.

[34] 张鸿宇, 王宇‍. 国外电网侧储能电站参与调频辅助服务市场的机制经验及对我国的启示 [J]‍. 储能科学与技术, 2021, 10(2): 766‒773‍.
Zhang H Y, Wang Y‍. Mechanism experience of foreign grid-side storage participating in frequency regulation auxiliary service market and its enlightenment to China [J]‍. Energy Storage Science and Technology, 2021, 10(2): 766‒773‍.

[35] Ren D S, Lu L G, Hua R, et al‍. Challenges and opportunities of practical sulfide-based all-solid-state batteries [J]‍. eTransportation, 2023, 18: 100272‍.

Related Research