期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第5期 doi: 10.1016/j.eng.2018.06.006

三峡库区香溪河流域多变量生态水文风险的不确定性分析

a College of Engineering, Design and Physical Sciences, Brunel University, London, Uxbridge, Middlesex, UB8 3PH, UK
b State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing 100875, China
c College of Engineering and Mines, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

收稿日期: 2018-03-26 修回日期: 2018-05-25 录用日期: 2018-06-04 发布日期: 2018-09-20

下一篇 上一篇

摘要

本研究基于copula函数开发了一种多变量生态水文风险评估框架,用于分析三峡库区香溪河流域极端生态水文事件的发生频率。通过马尔可夫链蒙特卡罗(MCMC)方法量化边缘分布及copula函数中参数的不确定性,并基于后验概率揭示联合重现期的内在不确定性,同时可进一步得到双变量及多变量风险的概率特征。研究结果显示所得概率模型的预测区间可很好地匹配观测值,尤其对洪水持续时间而言。同时,“AND”联合重现期的不确定性随着单个洪水变量重现期的增加而增加。此外,低设计流量及高服务年限可能导致高洪水风险且伴随大量不确定性。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Kidson R, Richards KS. Flood frequency analysis: assumption and alternatives. Prog Phys Geogr 2005;29(3):392–410. 链接1

[ 2 ] Karmakar S, Simonovic SP. Bivariate flood frequency analysis. Part 2: a copula- based approach with mixed marginal distributions. J Flood Risk Manag 2009;2 (1):32–44. 链接1

[ 3 ] Fan Y, Huang G, Huang K, Baetz BW. Planning water resources allocation under multiple uncertainties through a generalized fuzzy two-stage stochastic programming method. IEEE Trans Fuzzy Syst 2015;23(5):1488–504. 链接1

[ 4 ] Fan Y, Huang W, Li Y, Huang G, Huang K. A coupled ensemble filtering and probabilistic collocation approach for uncertainty quantification of hydrological models. J Hydrol 2015;530:255–72. 链接1

[ 5 ] Li Y, Nie S, Huang Z, McBean EA, Fan Y, Huang G. An integrated risk analysis method for planning water resource systems to support sustainable development of an arid region. J Environ Inform 2017;29(1):1–15. 链接1

[ 6 ] Chebana F, Dabo-Niang S, Ouarda TBMJ. Exploratory functional flood frequency analysis and outlier detection. Water Resour Res 2012;48(4):W04514. 链接1

[ 7 ] Guo Y, Baetz BW. Probabilistic description of runoff and leachate volumes from open windrow composting sites. J Environ Inform 2017;30(2):137–48. 链接1

[ 8 ] Chen B, Li P, Wu H, Husain T, Khan F. MCFP: a Monte Carlo simulation-based fuzzy programming approach for optimization under dual uncertainties of possibility and continuous probability. J Environ Inform 2017;29(2):88–97. 链接1

[ 9 ] Reddy JM, Ganguli P. Bivariate flood frequency analysis of upper Godavari River flows using Archimedean copulas. Water Resour Manage 2012;26 (14):3995–4018. 链接1

[10] Fan Y, Huang W, Huang G, Huang K, Li Y, Kong X. Bivariate hydrologic risk analysis based on a coupled entropy-copula method for the Xiangxi River in the Three Gorges Reservoir area, China. Theor Appl Climatol 2016; 125(1–2):381–97. 链接1

[11] Fan Y, Huang W, Huang G, Li Y, Huang K, Li Z. Hydrologic risk analysis in the Yangtze River Basin through coupling Gaussian mixtures into copulas. Adv Water Resour 2016;88:170–85. 链接1

[12] Zhang L, Singh VP. Bivariate flood frequency analysis using the copula method. J Hydrol Eng 2006;11(2):150–64. 链接1

[13] Sraj M, Bezak N, Brilly M. Bivariate flood frequency analysis using the copula function: a case study of the Litija Station on the Sava River. Hydrol Processes 2015;29(2):225–38. 链接1

[14] Kao SC, Govindaraju RS. A copula-based joint deficit index for droughts. J Hydrol 2010;380(1–2):121–34. 链接1

[15] Ma M, Song S, Ren L, Jiang S, Song J. Multivariate drought characteristics using trivariate Gaussian and Student t copulas. Hydrol Processes 2013;27(8):1175–90. 链接1

[16] Zhang L, Singh VP. Bivariate rainfall frequency distributions using Archimedean copulas. J Hydrol 2007;332(1–2):93–109. 链接1

[17] Vandenberghe S, Verhoest NEC, De Baets B. Fitting bivariate copulas to the dependence structure between storm characteristics: a detailed analysis based on 105 year 10 min rainfall. Water Resour Res 2010;46(1):W01512. 链接1

[18] Lee T, Salas JD. Copula-based stochastic simulation of hydrological data applied to Nile River flows. Hydrol Res 2011;42(4):318–30.

[19] Kong X, Huang G, Fan Y, Li Y. Maximum entropy-Gumbel-Hougaard copula method for simulation of monthly streamflow in Xiangxi River, China. Stochastic Environ Res Risk Assess 2015;29(3):833–46. 链接1

[20] Fan Y, Huang G, Baetz BW, Li Y, Huang K. Development of a copula-based particle filter (CopPF) approach for hydrologic data assimilation under consideration of parameter interdependence. Water Resour Res 2017;53(6):4850–75.

[21] Fan Y, Huang G, Baetz BW, Li Y, Huang K, Chen X, et al. Development of integrated approaches for hydrological data assimilation through combination of ensemble Kalman filter and particle filter methods. J Hydrol 2017;550:412–26. 链接1

[22] Chen F, Huang G, Fan Y, Chen J. A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning. Appl Energy 2017;187:291–309. 链接1

[23] Huang C, Nie S, Guo L, Fan Y. Inexact fuzzy stochastic chance constraint programming for emergency evacuation in Qinshan Nuclear Power Plant under uncertainty. J Environ Inform 2017;30(1):63–78. 链接1

[24] Huang K, Dai L, Yao M, Fan Y, Kong X. Modelling dependence between traffic noise and traffic flow through an entropy-copula method. J Environ Inform 2017;29(2):134–51. 链接1

[25] Yu L, Li Y, Huang G, Fan Y, Nie S. A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: a case study of the urban agglomeration of Beijing and Tianjin. Appl Energy 2018;210:60–74. 链接1

[26] Guo A, Chang J, Wang Y, Huang Q, Zhou S. Flood risk analysis for flood control and sediment transportation in sandy regions: a case study in the Loess Plateau, China. J Hydrol 2018;560:39–55. 链接1

[27] Guo A, Chang J, Wang Y, Huang Q, Guo Z, Zhou S. Bivariate frequency analysis of flood and extreme precipitation under changing environment: case study in catchments of the Loess Plateau, China. Stochastic Environ Res Risk Assess 2018;32(7):2057–74. 链接1

[28] Merz B, Thieken AH. Separating natural and epistemic uncertainty in flood frequency analysis. J Hydrol 2005;309(1–4):114–32. 链接1

[29] Liang Z, Chang W, Li B. Bayesian flood frequency analysis in the light of model and parameter uncertainties. Stochastic Environ Res Risk Assess 2012;26 (5):721–30. 链接1

[30] Nelsen RB. An introduction to copulas. 2nd ed. New York: Springer; 2006.

[31] Ganguli P, Reddy MJ. Probabilistic assessment of flood risks using trivariate copulas. Theor Appl Climatol 2013;111(1–2):341–60. 链接1

[32] Salvadori G, De Michele C, Kottegoda NT, Rosso R. Extremes in nature: an approach using copula. Dordrencht: Springer; 2007. p. 292.

[33] Salvadori G, De Michele C, Durante F. On the return period and design in a multivariate framework. Hydrol Earth Syst Sci 2011;15(11):3293–305. 链接1

[34] Han JC, Huang GH, Zhang H, Li Z, Li YP. Bayesian uncertainty analysis in hydrological modeling associated with watershed subdivision level: a case study of SLURP model applied to the Xiangxi River watershed, China. Stochastic Environ Res Risk Assess 2014;28(4):973–89. 链接1

[35] Xu H, Taylor RG, Kingston DG, Jiang T, Thompson JR, Todd MC. Hydrological modeling of River Xiangxi using SWAT2005: a comparison of model parameterizations using station and gridded meteorological observations. Quat Int 2010;226(1–2):54–9. 链接1

[36] Yue S. The bivariate lognormal distribution to model a multivariate flood episode. Hydrol Processes 2000;14(14):2575–88. 链接1

[37] Yue S. A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrol Processes 2001;15(6):1033–45. 链接1

[38] Adamowski K. A Monte Carlo comparison of parametric and nonparametric estimation of flood frequencies. J Hydrol 1989;108:295–308. 链接1

[39] Kite GW. Frequency and risk analysis in Hydrology. Littleton: Water Resources Publications; 1988.

[40] De Michele C, Salvadori G. A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. J Geophys Res 2003;108(D2):4067. 链接1

相关研究