期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第2期 doi: 10.1016/j.eng.2018.11.022

浅水富营养化湖泊巢湖汞的历史沉积记录——人类活动和气候变化的影响

a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing
100012, China
b Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA

收稿日期: 2018-05-18 修回日期: 2018-10-03 录用日期: 2018-11-08 发布日期: 2019-02-02

下一篇 上一篇

摘要

汞(Hg)及其衍生物作为危险的环境污染物,其生物毒性、生物累积和放大作用对水生生态系统和人类健康造成潜在风险。沉积物柱芯可为湖泊历史污染过程提供重要信息,追溯人类活动或自然条件变化的影响。本研究以浅水富营养化湖泊——巢湖为例,解析巢湖沉积物中汞的百年历史变化及其受人类活动和气候变化的影响。结果表明,巢湖汞的沉积经历了3个阶段(20世纪60年代前、20世纪60—80年代和20世纪80年代后)。20世纪60年代前,沉积物柱芯汞含量的变化趋势不显著,且东、西湖区无空间差异;20世纪60—80年代,沉积物汞的浓度逐渐升高,西湖区的汞浓度高于东湖区,主要与西湖区受人为污染较重有关;通过分析沉积物汞与重金属(铁、钴、铬、铜、锰、铅、锌)、碳氮稳定同位素(δ13C 和 δ15N)、营养物质、粒度和气象因子的关系,揭示了人类活动、水动力条件和气候变化对巢湖汞沉积的影响,发现20 世纪60年代以后沉积物剖面的汞浓度明显升高,主要是由于水动力条件变化和流域经济快速发展导致了人为源汞输入的增长。此外,温度、风速和蒸发量对汞的环境行为和归趋产生交互复杂影响。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Chen L, Xu Z, Ding X, Zhang W, Huang Y, Fan R, et al. Spatial trend and pollution assessment of total mercury and methylmercury pollution in the Pearl River Delta soil, South China. Chemosphere 2012;88(5):612–9. 链接1

[ 2 ] Eyrikh S, Eichler A, Tobler L, Malygina N, Papina T, Schwikowski M. A 320 year ice-core record of atmospheric Hg pollution in the Altai, central Asia. Environ Sci Technol 2017;51(20):11597–606. 链接1

[ 3 ] Rimondi V, Gray JE, Costagliola P, Vaselli O, Lattanzi P. Concentration, distribution, and translocation of mercury and methylmercury in minewaste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy. Sci Total Environ 2012;414(1):318–27. 链接1

[ 4 ] Gray JE, Van Metre PC, Pribil MJ, Horowitz AJ. Tracing historical trends of Hg in the Mississippi River using Hg concentrations and Hg isotopic compositions in a lake sediment core, Lake Whittington, Mississippi, USA. Chem Geol 2015;395:80–7. 链接1

[ 5 ] Huo S, Zhang J, Yeager KM, Xi B, Qin Y, He Z, et al. Mobility and sulfidization of heavy metals in sediments of a shallow eutrophic lake, Lake Taihu, China. J Environ Sci 2015;31:1–11. 链接1

[ 6 ] Yeager KM, Santschi PH, Rifai HS, Suarez MP, Brinkmeyer R, Hung CC, et al. Dioxin chronology and fluxes in sediments of the Houston Ship Channel, Texas: influences of non-steady-state sediment transport and total organic carbon. Environ Sci Technol 2007;41(15):5291–8. 链接1

[ 7 ] Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng X, Fitzgerald W, et al. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. AMBIO: J Hum Environ 2007;36(1):19–32. 链接1

[ 8 ] Gray JE, Pribil MJ, Van Metre PC, Borrok DM, Thapalia A. Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington, USA. Appl Geochem 2013;29(1):1–12. 链接1

[ 9 ] Lin H, Wang X, Gong P, Ren J, Wang C, Yuan X, et al. The influence of climate change on the accumulation of polycyclic aromatic hydrocarbons, black carbon and mercury in a shrinking remote lake of the southern Tibetan Plateau. Sci Total Environ 2017;601–2:1814–23. 链接1

[10] Feng X, Foucher D, Hintelmann H, Yan H, He T, Qiu G. Tracing mercury contamination sources in sediments using mercury isotope compositions. Environ Sci Technol 2010;44(9):3363–8. 链接1

[11] Jackson TA, Muir DCG. Mass-dependent and mass-independent variations in the isotope composition of mercury in a sediment core from a lake polluted by emissions from the combustion of coal. Sci Total Environ 2012;417– 8:189–203. 链接1

[12] Zan F, Huo S, Xi B, Zhu C, Liao H, Zhang J, et al. A 100-year sedimentary record of natural and anthropogenic impacts on a shallow eutrophic lake, Lake Chaohu, China. J Environ Monit 2012;14(3):804–16. 链接1

[13] Zan F, Huo S, Xi B, Su J, Li X, Zhang J, et al. A 100 year sedimentary record of heavy metal pollution in a shallow eutrophic lake, Lake Chaohu, China. J Environ Monit 2011;13(10):2788–97. 链接1

[14] Huo S, Li C, Xi B, Yu Z, Yeager KM, Wu F. Historical record of polychlorinated biphenyls (PCBs) and special occurrence of PCB 209 in a shallow fresh-water lake from eastern China. Chemosphere 2017;184:832–40. 链接1

[15] Li C, Huo S, Xi B, Yu Z, Zeng X, Zhang J, et al. Historical deposition behaviors of organochlorine pesticides (OCPs) in the sediments of a shallow eutrophic lake in eastern China: roles of the sources and sedimentological conditions. Ecol Indic 2015;53(2):1–10. 链接1

[16] Li C, Huo S, Yu Z, Guo W, Xi B, He Z, et al. Historical records of polycyclic aromatic hydrocarbon deposition in a shallow eutrophic lake: impacts of sources and sedimentological conditions. J Environ Sci 2016;41:261–9. 链接1

[17] Guo W, Huo S, Ding W. Historical record of human impact in a lake of northern China: magnetic susceptibility, nutrients, heavy metals and OCPs. Ecol Indic 2015;57:74–81. 链接1

[18] Binford MW. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol 1990;3(3):253–67. 链接1

[19] Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 2009;157(5):1533–43. 链接1

[20] Wan GJ, Chen JA, Wu FC, Xu SQ, Bai ZG, Wan EY, et al. Coupling between 210Pbex and organic matter in sediments of a nutrient-enriched lake: an example from Lake Chenghai, China. Chem Geol 2005;224(4):223–36. 链接1

[21] Xu Y, Gao X, Shen Y, Xu C, Shi Y, Giorgi F. A daily temperature dataset over China and its application in validating a RCM simulation. Adv Atmos Sci 2009;26(4):763–72. 链接1

[22] Guo W, Pei Y, Yang Z, Chen H. Historical changes in polycyclic aromatic hydrocarbons (PAHs) input in Lake Baiyangdian related to regional socioeconomic development. J Hazard Mater 2011;187(1–3):441–9. 链接1

[23] Liu L, Wang J, Wei G, Guan Y, Wong C, Zeng E. Sediment records of polycyclic aromatic hydrocarbons (PAHs) in the continental shelf of China: implications for evolving anthropogenic impacts. Environ Sci Technol 2012;46 (12):6497–504. 链接1

[24] Chen X, Yang X, Dong X, Liu Q. Nutrient dynamics linked to hydrological condition and anthropogenic nutrient loading in Chaohu Lake (southeast China). Hydrobiologia 2011;661(1):223–34. 链接1

[25] Yang H, Turner S, Rose NL. Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England. Environ Pollut 2016;219:1092–101. 链接1

[26] Wiklund JA, Kirk JL, Muir DCG, Evans M, Yang F, Keating J, et al. Anthropogenic mercury deposition in Flin Flon Manitoba and the Experimental Lakes Area Ontario (Canada): a multi-lake sediment core reconstruction. Sci Total Environ 2017;586:685–95. 链接1

[27] Zhang L, Ye X, Feng H, Jing Y, Ouyang T, Yu X, et al. Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Mar Pollut Bull 2007;54(7):974–82. 链接1

[28] Weiss-Penzias PS, Gay DA, Brigham ME, Parsons MT, Gustin MS, Ter Schure A. Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada. Sci Total Environ 2016;568:546–56. 链接1

[29] Haris H, Aris AZ. The geoaccumulation index and enrichment factor of mercury in mangrove sediment of Port Klang, Selangor, Malaysia. Arabian J Geosci 2013;6(11):4119–28. 链接1

[30] McKee LJ, Bonnema A, David N, Davis JA, Franz A, Grace R, et al. Long-term variation in concentrations and mass loads in a semi-arid watershed influenced by historic mercury mining and urban pollutant sources. Sci Total Environ 2017;605–606:482–97. 链接1

[31] Wang Q, Kim D, Dionysiou DD, Sorial GA, Timberlake D. Sources and remediation for mercury contamination in aquatic systems–a literature review. Environ Pollut 2004;131(2):323–36. 链接1

[32] Anhui Statistical Bureau, NBS Survey office in Anhui. Anhui statistical yearbook 2016. Beijing: China Statistics Press; 2016. Chinese. 链接1

[33] Wang Q, Shen W, Ma Z. Estimation of mercury emission from coal combustion in China. Environ Sci Technol 2000;34(13):2711–3. 链接1

[34] Li Y, Ma C, Zhu C, Huang R, Zheng C. Historical anthropogenic contributions to mercury accumulation recorded by a peat core from Dajiuhu montane mire, central China. Environ Pollut 2016;216:332–9. 链接1

[35] Nakagawa R, Yumita Y. Change and behavior of residual mercury in paddy soils and rice of Japan. Chemosphere 1998;37(8):1483–7. 链接1

[36] Liu Y, Wang J, Zheng Y, Zhang L, He J. Patterns of bacterial diversity along a long-term mercury-contaminated gradient in the paddy soils. Microb Ecol 2014;68(3):575–83. 链接1

[37] Walters C, Couto M, McClurg N, Silwana B, Somerset V. Baseline monitoring of mercury levels in environmental matrices in the Limpopo Province. Water Air Soil Pollut 2017;228(2):57–71. 链接1

[38] Cesário R, Hintelmann H, O’Driscoll NJ, Monteiro CE, Caetano M, Nogueira M, et al. Biogeochemical cycle of mercury and methylmercury in two highly contaminated areas of Tagus Estuary (Portugal). Water Air Soil Pollut 2017;228(7):257–76. 链接1

[39] Woodward CA, Potito AP, Beilman DW. Carbon and nitrogen stable isotope ratios in surface sediments from lakes of western Ireland: implications for inferring past lake productivity and nitrogen loading. J Paleolimnol 2012;47 (2):167–84. 链接1

[40] Meyers PA, Lallier-Verges E. Lacustrine sedimentary organic matter records of late quaternary paleoclimates. J Paleolimnol 1999;21(3):345–72. 链接1

[41] O’Beirne MD, Werne JP, Hecky RE, Johnson TC, Katsev S, Reavie ED. Anthropogenic climate change has altered primary productivity in Lake Superior. Nat Commun 2017;8:15713. 链接1

[42] Weber JH. Review of possible paths for abiotic methylation of mercury (II) in the aquatic environment. Chemosphere 1993;26(11):2063–77. 链接1

[43] Ramond JB, Petit F, Quillet L, Ouddane B, Berthe T. Evidence of methylmercury production and modification of the microbial community structure in estuary sediments contaminated with wastewater treatment plant effluents. Mar Pollut Bull 2011;62(5):1073–80. 链接1

[44] Brown CA, Sharp D, Collura TCM. Effect of climate change on water temperature and attainment of water temperature criteria in the Yaquina Estuary, Oregon (USA). Estuar Coast Shelf Sci 2016;169:136–46. 链接1

[45] Tomiyasu T, Kodamatani H, Imura R, Matsuyama A, Miyamoto J, Akagi H, et al. The dynamics of mercury near Idrija mercury mine, Slovenia: horizontal and vertical distributions of total, methyl, and ethyl mercury concentrations in soils. Chemosphere 2017;184:244–52. 链接1

[46] Brazeau ML, Blais JM, Paterson AM, Keller W, Poulain AJ. Evidence for microbially mediated production of elemental mercury (Hg0 ) in subarctic lake sediments. Appl Geochem 2013;37:142–8. 链接1

[47] Zhu Y, Zou X, Feng S, Tang H. The effect of grain size on the Cu, Pb, Ni, Cd speciation and distribution in sediments: a case study of Dongping Lake, China. Environ Geol 2006;50(5):753–9. 链接1

[48] Kraemer BM, Chandra S, Dell AI, Dix M, Kuusisto E, Livingtone DM, et al. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism. Glob Change Biol 2017;23 (5):1881–90. 链接1

[49] Hansen KM, Christensen JH, Brandt J. The influence of climate change on atmospheric deposition of mercury in the Arctic—a model sensitivity study. Int J Environ Res Public Health 2015;12(9):11254–68. 链接1

[50] Wang X, Sun D, Yao T. Climate change and global cycling of persistent organic pollutants: a critical review. Sci China Earth Sci 2016;59(10):1899–911. 链接1

[51] Lepori F, Roberts JJ. Past and future warming of a deep European lake (Lake Lugano): what are the climatic drivers? J Great Lakes Res 2015;41 (4):973–81. 链接1

[52] O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett 2015;42(24):10773–81. 链接1

[53] Li F, Chung N, Bae MJ, Kwon YS, Kwon TS, Park YS. Temperature change and macroinvertebrate biodiversity: assessments of organism vulnerability and potential distributions. Clim Change 2013;119(2):4231–434. 链接1

[54] Kane ES, Mazzoleni LR, Kratz CJ, Hribljan JA, Johnson CP, Pypker TG, et al. Peat porewater dissolved organic carbon concentration and lability increase with warming: a field temperature manipulation experiment in a poor-fen. Biogeochemistry 2014;119(1–3):161–78. 链接1

[55] Bravo AG, Bouchet S, Tolu J, Björn E, Mateos-Rivera A, Bertilsson S. Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nat Commun 2017;8:14255. 链接1

[56] Li Y, Wang W, Yang L, Li H. A review of mercury in environmental biogeochemistry. Prog Geogr 2004;23(6):33–40. 链接1

相关研究