期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第20卷 第1期 doi: 10.1016/j.eng.2021.07.028

港珠澳大桥大直径钢圆筒多振锤联动安装的可打性

a Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
b The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen 518057, China
c Tianjin Port Engineering Institute Co., Ltd. of CCCC First Harbor Engineering Co., Ltd., Tianjin 300222, China
d Key Laboratory of Port Geotechnical Engineering, Ministry of Communications of People's Republic of China, Tianjin 300222, China
e CCCC First Harbor Engineering Company Ltd., Tianjin 300461, China
f AECOM Asia Company Limited, Hong Kong 999077, China

收稿日期: 2021-02-23 修回日期: 2021-05-29 录用日期: 2021-07-28 发布日期: 2022-01-19

下一篇 上一篇

摘要

港珠澳大桥人工岛采用八振锤联动的方式将120 个直径22 m、最大重量531 t 的钢圆筒围堰打入海床,最大嵌入深度达33 m。由于缺乏相关工程经验,多锤联动下大直径钢圆筒的振动打入速率和安装时间的预测是当时面临的难题,对港珠澳大桥施工控制有相当大的影响。本文基于地质勘察、施工监测和数值
模拟,对港珠澳大桥大直径钢圆筒的振动打入过程进行了研究,对东、西人工岛钢圆筒的振动打入速率、安装精度和动力响应进行了分析。土体振动摩阻力对钢圆筒的可打性具有重要影响,但目前的振动摩阻力设计方法因无法考虑尺寸效应而欠缺准确性。因此,本研究针对大直径开口薄壁钢圆筒的非土塞工况,提出了一种土体振动摩阻力的计算方法,通过归一化的有效面积比A¯r,eff来考虑尺寸效应。采用本文提出的振动摩阻力模型进行的可打性分析结果与实测数据更接近,为今后的工程实践提供了参考。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

参考文献

[ 1 ] Tara D, Middendorp P, Verbeek GM. Modeling and observations of pile installation using vibro hammers in fraser river delta soils. In: Proceedings of 22nd Vancouver Geotechnical Society Symposium. 2014 Jan; Vancouver, Canada. Vancouver: Vancouver Geotechnical Society; 2014.

[ 2 ] Lin M, Lin W. The Hong Kong‒Zhuhai‒Macao Island and Tunnel Project. Engineering 2007;3(5):783‒4.

[ 3 ] Zhu Y, Zhang J, Gao X. Construction management and technical innovation of the main project of Hong Kong‒Zhuhai‒Macao Bridge. Front Eng Manag 2018;5(1):128‒32.

[ 4 ] Zhu YL, Lin M, Meng FC, Liu XD, Lin W. The Hong Kong‒Zhuhai‒Macao Bridge. Engineering 2019;5(1):10‒4. 链接1

[ 5 ] Liu A, Li B, Chen J, Gao C. Research and application of large diameter steel cylinder island construction technology in Hong Kong‒Zhuhai‒Macao Bridge project. Ships Offshore Struct 2020;1‒9. 链接1

[ 6 ] Maloff A, León G, Puy M. Design and construction of a cellular cofferdam for the Pacific Access Channel. In: Proceedings of 34th PIANC-World Congress; 2018 May 7‒8; Panama City, Panama; 2018. 链接1

[ 7 ] Hua W, Wang GJ, Hasegawa A. Experimental study on reinforced concrete filled circular steel tubular columns. Steel Compos Struct 2014;17(4):517‒33. 链接1

[ 8 ] Xu X, Liu Y, Li S. Calculating method for vibro-sinking large diameter steel caissons. China Harbour Engineering 2014;10:14‒6. Chinese.

[ 9 ] O’Neil MW, Vipulanandan C, Wong D. Laboratory modelling of vibro-driven piles. J Geotech Eng 1990;116(8):1191‒209. 链接1

[10] Moriyasu S, Kobayashi SI, Matsumoto T. Experimental study on friction fatigue of vibratory driven piles by in situ model tests. Soil Found 2018;58(4):853‒65. 链接1

[11] Viking K. Vibro-driveability―a field study of vibratory driven sheet piles in non-cohesive soils [dissertation]. Sweden: Royal Institute of Technology; 2002.

[12] Qin Z, Chen L, Song C, Zhang J. Field Tests for Investigating the Extraction Rate of Piles Using a Vibratory Technique. J Shanghai Jiaotong Univ 2018;23(4):482‒9. 链接1

[13] Holeyman A, Bertin R, Whenham V. Impedance of pile shafts under axial vibratory loads. Soil Dyn Earthquake Eng 2013;44:115‒26. 链接1

[14] Chrisopoulos S, Vogelsang J. A finite element benchmark study based on experimental modeling of vibratory pile driving in saturated sand. Soil Dyn Earthquake Eng 2019;122:248‒60. 链接1

[15] Staubach P, Machaček J. Influence of relative acceleration in saturated sand: analytical approach and simulation of vibratory pile driving tests. Comput Geotech 2019;112:173‒84. 链接1

[16] DFI Committee on Marine Foundations. Comparison of impact versus vibratory driven piles., Technical Report. Hawthorne: Deep Foundation Institute; 2015. Report No. 14007-01.

[17] Smith EAL. Pile driving analysis by the wave equation. J Soil Mech Found Div 1960;86(4):35‒61. 链接1

[18] Rausche F. Modeling of vibratory pile driving. In: Proceedings of the international Conference on Vibratory Pile Driving and Deep Soil Compaction, 2002 Sep 9‍‒‍11; Louvain-la-Neuve, Belgium. Abingdon: A.A. Balkema Publishers. p. 21‒32. 链接1

[19] Gavin KG, O’Kelly BC. Effect of friction fatigue on pile capacity in dense sand. J Geotech Geoenviron Eng 2007;133(1):63‒71. 链接1

[20] White DJ. A general framework for shaft resistance on displacement piles in sand. In: Proceedings of International Symposium on Frontiers in Offshore Geotechnics (ISFOG). 2005 Sep 19‍‒‍21; Perth, Australia. London: Taylor & Francis Group; 2005. p. 697‒703. 链接1

[21] Lehane BM, Schneider JAA, Xu X. A review of design methods for offshore driven piles in siliceous sand. Perth: The University of Western Australia; 2005.

[22] Jonker G. Vibratory pile driving hammers for pile installations and soil improvement projects. In: Proceedings of Offshore Technology Conference. 1987 Apr 27‒30; Houston, TX, USA; Richardson: OnePetro; 1987. 链接1

[23] Barkan D. Foundation engineering and drilling by vibration method. In: Proceedings of 4th International Conference on Soil Mechanics and Foundation Engineering. London, UK; 1957.

[24] Holeyman AE, Legrand C, Van R. A method to predict the drivability of vibratory driven piles. In: Proceedings of International Conference on the Application of Stress-wave Theory to Piles. Orlando, FL, USA; 1996.

[25] Paikowsky SG, Whitman RV. The effects of plugging on pile performance and design. Can Geotech J 1990;27(4):429‒40. 链接1

[26] De Nicola A, Randolph MF. The plugging behaviour of driven and jacked piles in sand. Geotechnique 1997;47(4):841‒56. 链接1

[27] Hight DW, Lawrence DM, Farquhar GB, Mulligan GW, Gue SS, Potts DM. Evidence for scale effects in the end bearing capacity of open-ended piles in sand. In: Proceedings of Offshore Technology Conference. 1996 May; Houston, TX, USA. Richardson: OnePetro; 1996. 链接1

[28] Jeong SS, Ko JY, Won JO, Lee KW. Bearing capacity analysis of open-ended piles considering the degree of soil plugging. Soil Found 2015;55(5):1001‒14. 链接1

[29] Kanbe M, Kikuchi Y, Hyodo T, Otsubo H, Yamazaki H. Effect of pile diameter on plugging phenomenon of open-ended piles. In: Proceedings of the First International Conference on Press-in Engineering. 2018 Sep 19‒20; Kochi, Japan. International Conference on Performance Engineering (ICPE) Organizing Committee; 2018. p. 395‒400. 链接1

[30] Song, S. A new end bearing capacity equation on large diameter open-ended steel piles considering plugging effect. In: Long PD, Dung NT. Geotechnics for Sustainable Infrastructure Development. Singapore: Springer. p. 113‒19. 链接1

[31] Lu WJ, Zhang G, Wang AX. Bearing behavior of multiple piles for offshore wind driven generator. Ocean Eng 2017;129:538‒48. 链接1

[32] Alm T, Bye A, Kvalstand TJ. A new interpretation of soil resistance for pile driveability analysis. In: Proceedings of 12th International Conference on Soil Mechanics and Foundation Engineering. 1989 Aug 13‍‒‍18; Rio de Janeiro, Brazil. London: International Society for Soil Mechanics and Geotechnical Engineering; 1989.

[33] GRLWEAP 2010 background report. Report. Cleveland: Pile Dynamics, inc.; 2010.

[34] Warrington D. Methods for Analysis of the Drivability of Piles by Vibration. In: Proceedings of Transportation Research Board 69th Annual Meeting, January 7-11, 1990, Washington D.C.

[35] Mizutani Y. Calculation of vibratory installation of steel pipe pile. Construction Machinery Research Corporation, Japan. 1966.

[36] Liu BH, Bian Q, Yuan MQ. Selection and Application of Vibratory Piling Hammers. China Harbour Engineering 2008;(3):38‒41. Chinese.

[37] Gavin KG, Lehane BM. The shaft capacity of pipe piles in sand. Can Geotech J 2003;40(1):36‒45. 链接1

[38] White DJ, Schneider JA, Lehane BM. The influence of effective area ratio on shaft friction of displacement piles in sand. In: Proceedings of 1st International Symposium on Frontiers in Offshore Geotechnics (ISFOG). 2005 Sep 19‒21; Perth, WA, Australia. Perth: University of Western Australia; 2005. p. 741‒7. 链接1

相关研究