期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第15卷 第8期 doi: 10.1016/j.eng.2021.07.030

碳青霉烯类耐药性在人源和动物源产NDM酶大肠埃希菌间的传播

a Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
b CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
c Institute of Antibiotics & Key Laboratory of Clinical Pharmacology of Antibiotics (MoH), Huashan Hospital, Fudan University, Shanghai 200040, China
d Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
e State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
f College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A and F University, Hangzhou 311300, China
g State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for
Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (CDC), Beijing 102206, China
h The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
i Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
j Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK

收稿日期: 2020-11-09 修回日期: 2021-06-25 录用日期: 2021-07-06 发布日期: 2022-04-16

下一篇 上一篇

摘要

Although carbapenem use is prohibited in animals in China, carbapenem-resistant Escherichia coli (CREC), especially New Delhi metallo-β-lactamase (NDM)-producing strains, are widely prevalent in foodproducing animals. At present, the impact of livestock-associated CREC strains on human populations at the national level is unknown. Here, we conduct a retrospective cross-sectional study to investigate the prevalence of CREC from clinical settings across 22 Chinese provinces or municipalities and analyze anthropogenic factors associated with their presence. We also ascertain the blaNDM and blaKPC abundance among pig and chicken farms and present a detailed genomic framework for CREC of animal and human origin. Overall, 631/29799 (2.1%) clinical Escherichia coli (E. coli) isolates were identified as CREC. Multivariable analysis revealed that being male, an age below 1, an age between 13 and 18, provinces with greater chicken production, and provinces with higher pig production were associated with higher odds of CREC infection. In general, 73.8% (n = 45/61) of pig farms and 62.2% (n = 28/45) of chicken farms had a blaNDM abundance of 1×10-5 to 1×10-3 and 1×10-3  to 1×10-2, respectively. Among all the Chinese NDM-positive E. coli (n = 463) available at the National Center for Biotechnology Information (NCBI), the genomic analysis revealed that blaNDM-5 and IncX3 were the predominant carbapenemase gene-plasmid combination, while a highly homogeneous relationship between NDM-positive isolates from humans and animals was demonstrated at the plasmid and core genome levels. All the findings suggest frequent CREC transmission between humans and animals, indicating that further discussions on the use of antibiotics in animals and humans are needed, both in China and across the globe.

补充材料

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] El-Gamal MI, Brahim I, Hisham N, Aladdin R, Mohammed H, Bahaaeldin A. Recent updates of carbapenem antibiotics. Eur J Med Chem 2017;131:185‒95. 链接1

[ 2 ] Potter RF, D’Souza AW, Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat 2016;29:30‒46. 链接1

[ 3 ] Stewardson AJ, Marimuthu K, Sengupta S, Allignol A, El-Bouseary M, Carvalho MJ, et al. Effect of carbapenem resistance on outcomes of bloodstream infection caused by Enterobacteriaceae in low-income and middle-income countries (PANORAMA): a multinational prospective cohort study. Lancet Infect Dis 2019;19(6):601‒10. 链接1

[ 4 ] CDC. Antibiotic resistance threats in the United States, 2019 [Internet]. Atlanta, GA: US Department of Health and Human Services, CDC; 2019 Dec [cited 2020 Nov 1]. Available from: https://www.‍cdc.‍gov/drugresistance/Biggest-Threats.html. 链接1

[ 5 ] WHO. WHO publishes list of bacteria for which new antibiotics are urgently needed [Internet]. Geneva: World Health Organization; 2017 Feb 27 [cited 2020 Nov 1]. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. 链接1

[ 6 ] Iovleva A, Doi Y. Carbapenem-resistant Enterobacteriaceae. Clin Lab Med 2017;37(2):303‒15. 链接1

[ 7 ] Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM Metallo-betalactamases and their bacterial producers in health care settings. Clin Microbiol Rev 2019;32(2):e00115‒18. 链接1

[ 8 ] Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis 2017;17(2):153‒63.

[ 9 ] Zhang R, Liu L, Zhou H, Chan EW, Li J, Fang Y, et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine 2017;19:98‒106. 链接1

[10] Shen Z, Hu Y, Sun Q, Hu F, Zhou H, Shu L, et al. Emerging carriage of NDM-5 and MCR-1 in Escherichia coli from healthy people in multiple regions in China: a cross sectional observational study. EClinicalMedicine 2018;6:11‒20. 链接1

[11] Köck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, et al. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect 2018;24(12):1241‒50. 链接1

[12] Wang Y, Zhang R, Li J, Wu Z, Yin W, Schwarz S, et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol 2017;2(4):16260. 链接1

[13] Liu X, Liu H, Wang L, Peng Q, Li Y, Zhou H, et al. Molecular characterization of extended-spectrum beta-lactamase-producing multidrug resistant Escherichia coli from swine in Northwest China. Front Microbiol 2018;9: 1756. 链接1

[14] Poirel L, Stephan R, Perreten V, Nordmann P. The carbapenemase threat in the animal world: the wrong culprit. J Antimicrob Chemother 2014;69(7):2007‒8. 链接1

[15] Gronthal T, Osterblad M, Eklund M, Jalava J, Nykasenoja S, Pekkanen K, et al. Sharing more than friendship—transmission of NDM-5 ST167 and CTX-M-9 ST69 Escherichia coli between dogs and humans in a family, Finland, 2015. Euro Surveill 2018;23(27):1700497.

[16] Wang Y, Xu C, Zhang R, Chen Y, Shen Y, Hu F, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. Lancet Infect Dis 2020;20(10):1161‒71. 链接1

[17] Shi X, Li Y, Yang Y, Shen Z, Cai C, Wang Y, et al. High prevalence and persistence of carbapenem and colistin resistance in livestock farm environments in China. J Hazard Mater 2021;406:124298. 链接1

[18] Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 2015;49(11):677‒82. 链接1

[19] Shen Y, Zhou H, Xu J, Wang Y, Zhang Q, Walsh TR, et al. Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. Nat Microbiol 2018;3(9):1054‒62. 链接1

[20] Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 2010;11(1):94. 链接1

[21] Wang JX, Xu F, Liu RM, Dong GX. Hotspot analysis and estimation of the main pollutants from livestock in China. J Agro-Environ Sci 2017;36(7):1316‒22.

[22] Ministry of Agriculture and Tural Affairs of the People’s Republic of China. Ministry of Agriculture on printing and distributing “National pig production development plan” [Internet]. Beijing: Ministry of Agriculture and Tural Affairs of the People’s Republic of China; 2017 Nov 27 [cited 2020 Nov 1]. Available from: http://www.moa.gov.cn/nybgb/2016/diwuqi/201711/t20171127_5920859.htm. 链接1

[23] Ministry of Agriculture of the People’s Republic of China. China agriculture Yearbook 2016. Beijing: China Agriculture Press; 2017.

[24] Pärnänen K, Karkman A, Hultman J, Lyra C, Bengtsson-Palme J, Larsson DGJ, et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun 2018;9(1):3891. 链接1

[25] ECfDPaControl. Surveillance of antimicrobial resistance in Europe 2018. Stockholm: ECDC; 2019.

[26] Sader HS, Castanheira M, Streit JM, Flamm RK. Frequency of occurrence and antimicrobial susceptibility of bacteria isolated from patients hospitalized with bloodstream infections in United States medical centers (2015‍‒‍2017). Diagn Microbiol Infect Dis 2019;95(3):114850. 链接1

[27] Zhang L, Zhai W, Lin Q, Zhu X, Xiao Z, Yang R, et al. Carbapenem-resistant Enterobacteriaceae in hematological patients: outcome of patients with carbapenem-resistant Enterobacteriaceae infection and risk factors for progression to infection after rectal colonization. Int J Antimicrob Agents 2019;54(4):527‒9. 链接1

[28] Logan LK, Renschler JP, Gandra S, Weinstein RA, Laxminarayan R. Carbapenemresistant Enterobacteriaceae in children, United States, 1999‒2012. Emerg Infect Dis 2015;21(11):2014‒21. 链接1

[29] Mittal G, Gaind R, Kumar D, Kaushik G, Gupta KB, Verma PK, et al. Risk factors for fecal carriage of carbapenemase producing Enterobacteriaceae among intensive care unit patients from a tertiary care center in India. BMC Microbiol 2016;16(1):138. 链接1

[30] D’Cunha R, Bach T, Young BA, Li P, Nalbant D, Zhang J, et al. Quantification of cefepime, meropenem, piperacillin, and tazobactam in human plasma using a sensitive and robust liquid chromatography-tandem mass spectrometry method, part 2: stability evaluation. Antimicrob Agents Chemother 2018;‍62(9):e00859‒18. 链接1

[31] Mills MC, Lee J. The threat of carbapenem-resistant bacteria in the environment: evidence of widespread contamination of reservoirs at a global scale. Environ Pollut 2019;255(Pt 1):113143. 链接1

[32] Li J, Bi Z, Ma S, Chen B, Cai C, He J, et al. Inter-host transmission of carbapenemase-producing Escherichia coli among humans and backyard animals. Environ Health Perspect 2019;127(10):107009. 链接1

[33] Ma T, Fu J, Xie N, Ma S, Lei L, Zhai W, et al. Fitness cost of blaNDM-5-carrying p3R-IncX3 plasmids in wild-type NDM-free Enterobacteriaceae. Microorganisms 2020;8(3):377. 链接1

[34] Zhai R, Fu Bo, Shi X, Sun C, Liu Z, Wang S, et al. Contaminated in-house environment contributes to the persistence and transmission of NDM-producing bacteria in a Chinese poultry farm. Environ Int 2020;139. 链接1

[35] Ministry of Agriculture and Rural Affairs of People’s Republic of China. Report on the use of veterinary antibiotics of China in 2018. In: Official veterinary bulletin. 2019. p. 57.

[36] OIE. OIE Annual report on antimicrobial agents intended for use in animals [Internet]. Paris: OIE; 2018 [cited 2020 Nov 1]. Available from: https://www.woah.org/app/uploads/2021/03/annual-report-amr-3.pdf. 链接1

[37] Peng Z, Li X, Hu Z, Li Z, Lv Y, Lei M, et al. Characteristics of carbapenemresistant and colistin-resistant Escherichia coli co-producing NDM-1 and MCR- 1 from pig farms in China. Microorganisms 2019;7(11):558. 链接1

[38] Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med 2018;24(12):1809‒14. 链接1

[39] Nordstrom L, Liu CM, Price LB. Foodborne urinary tract infections: a new paradigm for antimicrobial-resistant foodborne illness. Front Microbiol 2013;4:29. 链接1

[40] Shen C, Zhong LL, Yang Y, Doi Y, Paterson DL, Stoesser N, et al. Dynamics of mcr-1 prevalence and mcr-1-positive Escherichia coli after the cessation of colistin use as a feed additive for animals in China: a prospective cross-sectional and whole genome sequencing-based molecular epidemiological study. Lancet Microbe 2020;1(1):e34‒43. 链接1

[41] Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 2014;‍32(11): 1141‒5. 链接1

[42] Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 2019;25(2):219‒32. 链接1

[43] Liu S, Zhang J, Zhou Y, Hu N, Li J, Wang Y, et al. Pterostilbene restores carbapenem susceptibility in New Delhi metallo-beta-lactamase-producing isolates by inhibiting the activity of New Delhi metallo-beta-lactamases. Br J Pharmacol 2019;176(23):4548‒57. † www.chinets.com. 链接1

相关研究