期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第21卷 第2期 doi: 10.1016/j.eng.2021.08.024

冷冻-萃取/真空干燥法制备坚固和耐疲劳的聚酰亚胺纤维气凝胶及其增强阻燃性复合材料

a Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
b Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
c School of New Energy Science and Engineering, Xinyu University, Xinyu 330020, China

收稿日期: 2021-02-23 修回日期: 2021-06-12 录用日期: 2021-08-24 发布日期: 2021-12-10

下一篇 上一篇

摘要

在现代新材料的快速发展中,用节能、省时、低成本和简便的新型方法制备具有优良机械性能和热学性能的轻质、低密度和高孔隙率气凝胶十分必要。在本工作中,我们使用短切电纺聚酰亚胺(PI)纤维作为支撑骨架,通过开发出一种无需特殊干燥方法的真空干燥(VD)与冷冻-萃取相结合的方法,制备出高性能PI 纤维气凝胶(PIFAs)。所得PIFAs 具有低密度(≤52.8 mg⋅cm−3)和高孔隙率(>96%)。该PIFA在至少20 000 次的循环压缩过程中展现出高度的耐疲劳性及低能量损失系数。密度为39.1 mg⋅cm−3的PIFA具有40.4 mW⋅m−1⋅K−1的热导率。通过进一步使用聚硅氮烷对PIFAs复合改性后,其具备更强的耐火性和氮气氛围中的高残留率(>70%)。这些优异的性能使PIFAs 及其复合材料成为可应用于建筑工业、航空和航天工业轻质材料、隔热和防火层以及高温反应催化剂载体的可选材料。此外,本工作中提出的冷冻-萃取/VD法因其节能、省时和节约成本而可被拓展用于制备其他材料。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Chen Y, Zhang L, Yang Y, Pang B, Xu W, Duan G, et al. Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv Mater 2021;33(11):2005569. 链接1

[ 2 ] Chen Y, Yang Y, Xiong Y, Zhang L, Xu W, Duan G, et al. Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 2021;38:101204. 链接1

[ 3 ] Si Y, Yu J, Tang X, Ge J, Ding B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 2014;5(1):5802. 链接1

[ 4 ] Zhang D, Cai J, Xu W, Dong Q, Li Y, Liu G, et al. Synthesis, characterization and adsorption property of cellulose nanofiber-based hydrogels. J For Eng 2019;4(2):92‒8. Chinese.

[ 5 ] Jiang S, Agarwal S, Greiner A. Low-density open cellular sponges as functional materials. Angew Chem Int Ed Engl 2017;56(49):15520‒38. 链接1

[ 6 ] Zheng C, Zhu S, Lu Y, Mei C, Xu X, Yue Y, et al. Synthesis and characterization of cellulose nanofibers/polyacrylic acid-polyacrylamide double network electroconductive hydrogel. J For Eng 2020;5(4):93‒100. Chinese.

[ 7 ] Si Y, Wang X, Dou L, Yu J, Ding B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci Adv 2018;4(4):eaas8925. 链接1

[ 8 ] Jiang S, Uch B, Agarwal S, Greiner A. Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Appl Mater Interfaces 2017;9(37):32308‒15. 链接1

[ 9 ] Duan G, Jiang S, Jérôme V, Wendorff JH, Fathi A, Uhm J, et al. Ultralight, soft polymer sponges by self-assembly of short electrospun fibers in colloidal dispersions. Adv Funct Mater 2015;25(19):2850‒6. 链接1

[10] Zhou L, Zhou H, Li J, Tan S, Chen P, Xu Z. Preparation and properties of nanocellulose-based oil-absorbing aerogels. J For Eng 2019;4(1):67‍‍‒‍73. Chinese.

[11] Shang Q, Chen J, Yang X, Liu C, Hu Y, Zhou Y. Fabrication and oil absorbency of superhydrophobic magnetic cellulose aerogels. J For Eng 2019;4(6):105‒11. Chinese.

[12] Shang Q, Hu Y, Liu C, Yang X, Zhou Y. Fabrication of superhydrophobic cellulose composite aerogels for oil/water separation. J For Eng 2019;4(3):86‒92. Chinese.

[13] Wang L, Qiu Y, Lv H, Si Y, Liu L, Zhang Qi, et al. 3D superelastic scaffolds constructed from flexible inorganic nanofibers with self-fitting capability and tailorable gradient for bone regeneration. Adv Funct Mater 2019;29(31):1901407. 链接1

[14] Xu T, Ding Y, Wang Z, Zhao Y, Wu W, Fong H, et al. Three-dimensional and ultralight sponges with tunable conductivity assembled from electrospun nanofibers for a highly sensitive tactile pressure sensor. J Mater Chem C 2017;5(39):10288‒94. 链接1

[15] Si Y, Wang X, Yan C, Yang L, Yu J, Ding B. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressuresensitivity. Adv Mater 2016;28(43):9512‒8. 链接1

[16] Guo H, Chen Y, Li Y, Zhou W, Xu W, Pang L, et al. Electrospun fibrous materials and their applications for electromagnetic interference shielding: a review. Compos Part A Appl Sci Manuf 2021;143:106309. 链接1

[17] Chen Y, Zhang L, Mei C, Li Y, Duan G, Agarwal S, et al. Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications. ACS Appl Mater Interfaces 2020;12(31):35513‒22. 链接1

[18] Zou Y, Zhao J, Zhu J, Guo X, Chen P, Duan G, et al. A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl Mater Interfaces 2021;13(6):7617‒24. 链接1

[19] Deuber F, Mousavi S, Federer L, Hofer M, Adlhart C. Exploration of ultralight nanofiber aerogels as particle filters: capacity and efficiency. ACS Appl Mater Interfaces 2018;10(10):9069‒76. 链接1

[20] Qian Z, Wang Z, Chen Yi, Tong S, Ge M, Zhao N, et al. Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters. J Mater Chem A 2018;6(3):828‒32. 链接1

[21] Zhao X, Yang F, Wang Z, Ma P, Dong W, Hou H, et al. Exploration of the electrical conductivity of double-network silver nanowires/polyimide porous low-density compressible sponges. Compos Part B Eng 2020;182:107624. 链接1

[22] Jiang S, Reich S, Uch B, Hu P, Agarwal S, Greiner A. Exploration of the electrical conductivity of double network silver nanowires-polyimide porous low density compressible sponges. ACS Appl Mater Interfaces 2017;9(39):34286‒93. 链接1

[23] Jiang S, Cheong JY, Nam JS, Kim ID, Agarwal S, Greiner A. High-density fibrous polyimide sponges with superior mechanical and thermal properties. ACS Appl Mater Interfaces 2020;12(16):19006‒14. 链接1

[24] Ren RP, Wang Z, Ren J, Lv YK. Highly compressible polyimide/graphene aerogel for efficient oil/water separation. J Mater Sci 2019;54(7):5918‒26. 链接1

[25] Cheong JY, Benker L, Zhu J, Youn DY, Hou H, Agarwal S, et al. Generalized and feasible strategy to prepare ultra-porous, low density, compressible carbon nanoparticle sponges. Carbon 2019;154:363‒9. 链接1

[26] Shen Y, Wang L, Liu F, Liu H, Li D, Liu Q, et al. Solvent vapor strengthened polyimide nanofiber-based aerogels with high resilience and controllable porous structure. ACS Appl Mater Interfaces 2020;12(47):53104‒14. 链接1

[27] Pantoja M, Boynton N, Cavicchi KA, Dosa B, Cashman JL, Meador MAB. Increased flexibility in polyimide aerogels using aliphatic spacers in the polymer backbone. ACS Appl Mater Interfaces 2019;11(9):9425‒37. 链接1

[28] Yuan Z, Lin H, Qian X, Shen J. Converting a dilute slurry of hollow tube-like papermaking fibers into dynamic hydrogels. J Bioresour Bioprod 2019;4(4):214‒21.

[29] Jiang Q, Liao X, Yang J, Wang G, Chen J, Tian C, et al. A two-step process for the preparation of thermoplastic polyurethane/graphene aerogel composite foams with multi-stage networks for electromagnetic shielding. Compos Commun 2020;21:100416. 链接1

[30] Guo L, Zhang Z, Li M, Kang R, Chen Y, Song G, et al. Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freezedrying. Compos Commun 2020;19:134‒41. 链接1

[31] Han X, Wang Z, Ding L, Chen L, Wang F, Pu J, et al. Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin Chem Lett 2021;32(10):3105‒8. 链接1

[32] Miao X, Lin J, Bian F. Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. J Bioresour Bioprod 2020;5(1):26‒36. 链接1

[33] Wang Z, Dai Z, Wu J, Zhao N, Xu J. Vacuum-dried robust bridged silsesquioxane aerogels. Adv Mater 2013;25(32):4494‒7. 链接1

[34] Li C, Qiu L, Zhang B, Li D, Liu CY. Robust vacuum-/air-dried graphene aerogels and fast recoverable shape-memory hybrid foams. Adv Mater 2016;28(7):1510‒6. 链接1

[35] Yu ZL, Li GC, Fechler N, Yang N, Ma ZY, Wang X, et al. Polymerization under hypersaline conditions: a robust route to phenolic polymer-derived carbon aerogels. Angew Chem Int Ed Engl 2016;55(47):14623‒7. 链接1

[36] Lee J, Chang JY. Preparation of a compressible and hierarchically porous polyimide sponge via the sol-gel process of an aliphatic tetracarboxylic dianhydride and an aromatic triamine. Chem Commun 2016;52 (68):10419‒22. 链接1

[37] Yang G, Ning T, Zhao W, Deng W, Liu X. Robust ambient pressure dried polyimide aerogels and their graphene oxide directed growth of 1D‍‒‍2D nanohybrid aerogels using water as the only solvent. RSC Adv 2017;7(26):16210‒6. 链接1

[38] Xu X, Zhang Q, Yu Y, Chen W, Hu H, Li H. Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Adv Mater 2016;28(41):9223‒30. 链接1

[39] Yang H, Li Z, Lu B, Gao J, Jin X, Sun G, et al. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications. ACS Nano 2018;12(11):11407‒16. 链接1

[40] Yang H, Zhang T, Jiang M, Duan Y, Zhang J. Ambient pressure dried graphene aerogels with superelasticity and multifunctionality. J Mater Chem A 2015;3(38):19268‒72. 链接1

[41] Yang H, Li Z, Sun G, Jin X, Lu B, Zhang P, et al. Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale. Adv Funct Mater 2019;29(26):1901917. 链接1

[42] Liao X, Hu P, Agarwal S, Greiner A. Impact of the fiber length distribution on porous sponges originating from short electrospun fibers made from polymer yarn. Macromol Mater Eng 2020;305(2):1900629. 链接1

[43] Fan W, Zuo L, Zhang Y, Chen Y, Liu T. Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure. Compos Sci Technol 2018;156:186‒91. 链接1

[44] Fan W, Zhang X, Zhang Yi, Zhang Y, Liu T. Lightweight, strong, and superthermal insulating polyimide composite aerogels under high temperature. Compos Sci Technol 2019;173:47‒52. 链接1

[45] Zhao X, Yang F, Wang Z, Ma P, Dong W, Hou H, et al. Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers. Compos Part B Eng 2020;182:107624. 链接1

[46] Zhu Z, Yao H, Wang F, Dong J, Wu K, Cao J, et al. Fiber reinforced polyimide aerogel composites with high mechanical strength for high temperature insulation. Macromol Mater Eng 2019;304(5):1800676. 链接1

[47] Qian Z, Yang M, Li R, Li D, Zhang J, Xiao Y, et al. Fire-resistant, ultralight, superelastic and thermally insulated polybenzazole aerogels. J Mater Chem A 2018;6(42):20769‒77. 链接1

[48] Song J, Chen C, Yang Z, Kuang Y, Li T, Li Y, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 2018;12(1):140‒7. 链接1

[49] Jia C, Li L, Liu Y, Fang B, Ding H, Song J, et al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat Commun 2020;11(1):3732. 链接1

[50] Xie C, He L, Shi Y, Guo ZX, Qiu T, Tuo X. From monomers to a lasagna-like aerogel monolith: an assembling strategy for aramid nanofibers. ACS Nano 2019;13(7):7811‒24. 链接1

[51] Zhang X, Li W, Song P, You B, Sun G. Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel. Chem Eng J 2020;381:122784. 链接1

[52] Jiang S, Reich S, Uch B, Hu P, Agarwal S, Greiner A. Exploration of the electrical conductivity of double-network silver nanowires/polyimide porous lowdensity compressible sponges. ACS Appl Mater Interfaces 2017;9 (39):34286‒93. 链接1

[53] Tang Q, Fang Lu, Guo W. Effects of bamboo fiber length and loading on mechanical, thermal and pulverization properties of phenolic foam composites. J Bioresour Bioprod 2019;4(1):51‒9. 链接1

[54] Li J, Yu J, Wang Y, Zhu J, Hu Z. Intercalated montmorillonite reinforced polyimide separator prepared by solution blow spinning for lithium-ion batteries. Ind Eng Chem Res 2020;59(28):12879‒88. 链接1

[55] Wang YY, Zhou ZH, Zhou CG, Sun WJ, Gao JF, Dai K, et al. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl Mater Interfaces 2020;12(7):8704‒12. 链接1

[56] Liu W, Luo Y, Xu C. A new organosilicon adhesive based on polysiloxane and polysilazane. High Perform Polym 2013;25(5):543‒50. 链接1

[57] Barroso G, Döring M, Horcher A, Kienzle A, Motz G. Polysilazane-based coatings with anti-adherent properties for easy release of plastics and composites from metal molds. Adv Mater Interfaces 2020;7(10):1901952. 链接1

[58] Gardelle B, Duquesne S, Vu C, Bourbigot S. Thermal degradation and fire performance of polysilazane-based coatings. Thermochim Acta 2011;519(1‒2):28‒37.

[59] Ricci PC, Gulleri G, Fumagalli F, Carbonaro CM, Corpino R. Optical characterization of polysilazane based silica thin films on silicon substrates. Appl Surf Sci 2013;265:470‒4. 链接1

相关研究