期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第11卷 第4期 doi: 10.1016/j.eng.2021.08.025

用于无线供电物联网感知的电小尺寸惠更斯整流天线综述

Global Big Data Technologies Centre, School of Electrical and Data Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia

收稿日期: 2021-01-04 修回日期: 2021-07-18 录用日期: 2021-08-08 发布日期: 2021-12-22

下一篇 上一篇

摘要

远场无线电力传输(WPT)是一项重大突破性技术,它将支持许多预期中泛在的物联网(IoT)应用,而这些应用与第五代(5G)、第六代(6G)及以上无线生态系统相关。整流天线是整流电路和天线的组合,是远场WPT系统中最关键的组件。然而,紧凑型应用设备需要更小的集成整流天线,这些天线要同时具有大的电磁波捕获能力、高交流(AC)到直流(DC)转换效率,及促进多功能无线性能的作用。本文综述了各种整流天线的小型化技术,如曲折平面倒F天线(PIFA)整流天线、小型化的基于单极和偶极的整流天线、分形环和贴片整流天线、介质负载整流天线和电小尺寸近场谐振寄生整流天线。文中总结了它们的性能特征,并与我们之前开发的被证明更适合IoT 应用的电小尺寸惠更斯整流天线进行比较。例如,如本文所演示,它们经过定制可以成为无电池IoT 传感器。与电池供电设备相比,无电池的无线供电设备体积更小、重量更轻。此外,它们对环境友好,因此具有显著的社会效益。本文介绍了一系列高性能电小型惠更斯整流天线,包括惠更斯线极化(HLP)和圆极化(HCP)整流天线、基于这些设计的无线供电IoT 传感器以及双功能HLP整流天线和天线系统。最后,考虑两个线性均匀HLP整流天线阵列系统,以获得更为显著的大型无线电力捕获。示例阵列说明了如何有效将它们与DC或射频(RF)功率进行合成,从而促进IoT的实际应用。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

图22

图23

图24

图25

图26

图27

图28

图29

图30

图31

图32

图33

图34

图35

图36

参考文献

[ 1 ] Tesla N, inventor. Apparatus for transmitting electrical energy. United States patent US 1119732. 1914 Dec 1.

[ 2 ] Tesla N. The true wireless. Electr Exp 1919;2(5):1–13. 链接1

[ 3 ] Wheeler LP. II—Tesla’s contribution to high frequency. Electr Eng 1943;62(8): 355–7. 链接1

[ 4 ] Brown WC. The history of power transmission by radio waves. IEEE Trans Microw Theory Tech 1984;32(9):1230–42. 链接1

[ 5 ] Matsumoto H. Research on solar power satellites and microwave power transmission in Japan. IEEE Microw Mag 2002;3(4):36–45. 链接1

[ 6 ] Dickinson RM. Power in the sky: requirements for microwave wireless power beamers for powering high-altitude platforms. IEEE Microw Mag 2013;14(2): 36–47. 链接1

[ 7 ] Strassner B, Chang K. Microwave power transmission: historical milestones and system components. Proc IEEE 2013;101(6):1379–96. 链接1

[ 8 ] Massa A, Oliveri G, Viani F, Rocca P. Array designs for long-distance wireless power transmission: state-of-the-art and innovative solutions. Proc IEEE 2013;101(6):1464–81. 链接1

[ 9 ] Costanzo A, Dionigi M, Masotti D, Mongiardo M, Monti G, Tarricone L, et al. Electromagnetic energy harvesting and wireless power transmission: a unified approach. Proc IEEE 2014;102(11):1692–711. 链接1

[10] Carvalho NB, Georgiadis A, Costanzo A, Rogier H, Collado A, García JA, et al. Wireless power transmission: R&D activities within Europe. IEEE Trans Microw Theory Tech 2014;62(4):1031–45. 链接1

[11] Costanzo A, Masotti D. Smart solutions in smart spaces: getting the most from far-field wireless power transfer. IEEE Microw Mag 2016;17(5):30–45. 链接1

[12] Popovic Z. Near- and far-field wireless power transfer. In: Proceedings of 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS); 2017 Oct 18–20; Nis, Serbia; 2017. p. 3–6.

[13] Hester JGD, Kimionis J, Tentzeris MM. Printed motes for IoT wireless networks: state of the art, challenges, and outlooks. IEEE Trans Microw Theory Tech 2017;65(5):1819–30. 链接1

[14] Costanzo A, Masotti D. Energizing 5G: near- and far-field wireless energy and data transfer as an enabling technology for the 5G IoT. IEEE Microw Mag 2017;18(3):125–36. 链接1

[15] Wagih M, Weddell AS, Beeby S. Rectennas for radio-frequency energy harvesting and wireless power transfer: a review of antenna design. IEEE Antennas Propag Mag 2020;62(5):95–107. 链接1

[16] Shinohara N. History and innovation of wireless power transfer via microwaves. IEEE J Microw 2021;1(1):218–28. 链接1

[17] Li L, Zhang X, Song C, Huang Y. Progress, challenges, and perspective on metasurfaces for ambient radio frequency energy harvesting. Appl Phys Lett 2020;116(6):060501. 链接1

[18] Surender D, Khan T, Talukdar FA, De A, Antar YMM, Freundorder AP. Key components of rectenna system: a comprehensive survey. IETE J Res. In press.

[19] Campi T, Cruciani S, Palandrani F, De Santis V, Hirata A, Feliziani M. Wireless power transfer charging system for AIMDs and pacemakers. IEEE Trans Microw Theory Tech 2016;64(2):633–42. 链接1

[20] Jadidian J, Katabi D. Magnetic MIMO: how to charge your phone in your pocket. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking; 2014 Sep 7–11; Maui, HI, USA; 2014. p. 495–506.

[21] Karalis A, Joannopoulos JD, Soljacˇic´ M. Efficient wireless non-radiative midrange energy transfer. Ann Phys 2008;323(1):34–48. 链接1

[22] Schormans M, Valente V, Demosthenous A. Frequency splitting analysis and compensation method for inductive wireless powering of implantable biosensors. Sensors 2016;16(8):1229. 链接1

[23] McSpadden JO, Mankins JC. Space solar power programs and microwave wireless power transmission technology. IEEE Microw Mag 2002;3(4):46–57. 链接1

[24] Talla V, Kellogg B, Gollakota S, Smith JR. Battery-free cellphone. Proc ACM Interact Mob Wearable Ubiquitous Technol 2017;1(2):1–20. 链接1

[25] Misra V, Bozkurt A, Calhoun B, Jackson T, Jur J, Lach J, et al. Flexible technologies for self-powered wearable health and environmental sensing. Proc IEEE 2015;103(4):665–81. 链接1

[26] Palazzi V, Hester J, Bito J, Alimenti F, Kalialakis C, Collado A, et al. A novel ultralightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands. IEEE Trans Microw Theory Tech 2018;66(1):366–79. 链接1

[27] Shen S, Chiu CY, Murch RD. Multiport pixel rectenna for ambient RF energy harvesting. IEEE Trans Antennas Propag 2018;66(2):644–56. 链接1

[28] Sun H, Guo Y, He M, Zhong Z. Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wirel Propag Lett 2012;11:929–32. 链接1

[29] Popovic Z, Falkenstein EA, Costinett D, Zane R. Low-power far-field wireless powering for wireless sensors. Proc IEEE 2013;101(6):1397–409. 链接1

[30] Yang Y, Li J, Li L, Liu Y, Zhang B, Zhu H, et al. A 5.8 GHz circularly polarized rectenna with harmonic suppression and rectenna array for wireless power transfer. IEEE Antennas Wirel Propag Lett 2018;17(7):1276–80. 链接1

[31] Sun H, Geyi W. A new rectenna using beamwidth-enhanced antenna array for RF power harvesting applications. IEEE Antennas Wirel Propag Lett 2017;16:1451–4. 链接1

[32] Li L, Zhang X, Song C, Zhang W, Jia T, Huang Y. Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer. IEEE Trans Microw Theory Tech 2021;69(3):1518–28. 链接1

[33] Zhang X, Liu H, Li L. Tri-band miniaturized wide-angle and polarizationinsensitive metasurface for ambient energy harvesting. Appl Phys Lett 2017;111(7):071902. 链接1

[34] Ho DK, Ngo VD, Kharrat I, Vuong TP, Nguyen QC, Le MT. A novel dual-band rectenna for ambient RF energy harvesting at GSM 900 MHz and 1800 MHz. Adv Sci Technol Eng Syst J 2017;2(3):612–6. 链接1

[35] Zeng M, Andrenko AS, Liu X, Li Z, Tan HZ. A compact fractal loop rectenna for RF energy harvesting. IEEE Antennas Wirel Propag Lett 2017;16:2424–7. 链接1

[36] Shi Y, Jing J, Fan Y, Yang L, Wang M. Design of a novel compact and efficient rectenna for WiFi energy harvesting. Prog Electromagn Res C 2018;83:57–70. 链接1

[37] Liu C, Guo YX, Sun H, Xiao S. Design and safety considerations of an implantable rectenna for far-field wireless power transfer. IEEE Trans Antennas Propag 2014;62(11):5798–806. 链接1

[38] Zhu N, Ziolkowski RW, Xin H. A metamaterial-inspired, electrically small rectenna for high-efficiency, low power harvesting and scavenging at the global positioning system L1 frequency. Appl Phys Lett 2011;99(11):114101. 链接1

[39] Gu X, Hemour S, Guo L, Wu K. Integrated cooperative ambient power harvester collecting ubiquitous radio frequency and kinetic energy. IEEE Trans Microw Theory Tech 2018;66(9):4178–90. 链接1

[40] Hosain MK, Kouzani AZ, Tye SJ, Abulseoud OA, Amiet A, Galehdar A, et al. Development of a compact rectenna for wireless powering of a headmountable deep brain stimulation device. IEEE J Transl Eng Health Med 2014;2:1–13. 链接1

[41] Quddious A, Zahid S, Tahir FA, Antoniades MA, Vryonides P, Nikolaou S. Dualband compact rectenna for UHF and ISM wireless power transfer systems. IEEE Trans Antennas Propag 2021;69(4):2392–7. 链接1

[42] Eid A, Hester JGD, Costantine J, Tawk Y, Ramadan AH, Tentzeris MM. A compact source–load agnostic flexible rectenna topology for IoT devices. IEEE Trans Antennas Propag 2020;68(4):2621–9. 链接1

[43] Hoefle M, Haehnsen K, Oprea I, Cojocari O, Penirschke A, Jakoby R. Compact and sensitive millimetre wave detectors based on low barrier Schottky diodes on impedance matched planar antennas. J Infrared Millim Terahertz Waves 2014;35(11):891–908. 链接1

[44] Chuma EL, Rodríguez LDLT, Iano Y, Roger LLB, Sanchez-Soriano MA. Compact rectenna based on a fractal geometry with a high conversion energy efficiency per area. IET Microw Antennas Propag 2018;12(2):173–8. 链接1

[45] Shrestha S, Lee SR, Choi DY. A new fractal-based miniaturized dual band patch antenna for RF energy harvesting. Int J Antennas Propag 2014;2014:1–9. 链接1

[46] Bakogianni S, Koulouridis S. A dual-band implantable rectenna for wireless data and power support at sub-GHz region. IEEE Trans Antennas Propag 2019;67(11):6800–10. 链接1

[47] Cheng HW, Yu TC, Luo CH. Direct current driving impedance matching method for rectenna using medical implant communication service band for wireless battery charging. IET Microw Antennas Propag 2013;7(4):277–82. 链接1

[48] Tang MC, Wang H, Ziolkowski RW. Design and testing of simple, electrically small, low-profile, Huygens source antennas with broadside radiation performance. IEEE Trans Antennas Propag 2016;64(11):4607–17. 链接1

[49] Lin W, Ziolkowski RW, Huang J. Electrically small, low profile, highly efficient, Huygens dipole rectennas for wirelessly powering Internet-of-Things (IoT) devices. IEEE Trans Antennas Propag 2019;67(6):3670–9. 链接1

[50] Lin W, Ziolkowski RW. Electrically small, single-substrate Huygens dipole rectenna for ultracompact wireless power transfer applications. IEEE Trans Antennas Propag 2021;69(2):1130–4. 链接1

[51] Lin W, Ziolkowski RW. Wirelessly powered light and temperature sensors facilitated by electrically small omnidirectional and Huygens dipole antennas. Sensors 2019;19(9):1998. 链接1

[52] Lin W, Ziolkowski RW. Electrically-small, low-profile, Huygens circularly polarized antenna. IEEE Trans Antennas Propag 2018;66(2):636–43. 链接1

[53] Lin W, Ziolkowski RW. Electrically small Huygens CP rectenna with a driven loop element maximizes its wireless power transfer efficiency. IEEE Trans Antennas Propag 2020;68(1):540–5. 链接1

[54] Lin W, Ziolkowski RW. Electrically small Huygens antenna-based fullyintegrated wireless power transfer and communication system. IEEE Access 2019;7:39762–9. 链接1

[55] Luk KM, Wong H. A new wideband unidirectional antenna element. Int J Microw Opt Technol 2006;1(1):35–44. 链接1

[56] Ge L, Luk KM. A low-profile magneto-electric dipole antenna. IEEE Trans Antennas Propag 2012;60(4):1684–9. 链接1

[57] Luk KM, Wu B. The magnetoelectric dipole—a wideband antenna for base stations in mobile communications. Proc IEEE 2012;100(7):2297–307. 链接1

[58] Wang J, Li Y, Wang J, Ge L, Chen M, Zhang Z, et al. A low-profile vertically polarized magneto-electric monopole antenna with a 60% bandwidth for illimetre-wave applications. IEEE Trans Antennas Propag 2020;69(1):3–13. 链接1

[59] Li Y, Ge L, Chen M, Zhang Z, Li Z, Wang J. Multibeam 3-D-printed illimet lens fed by magnetoelectric dipole antennas for illimetre-wave MIMO applications. IEEE Trans Antennas Propag 2019;67(5):2923–33. 链接1

[60] Ziolkowski RW. Using Huygens multipole arrays to realize unidirectional needle-like radiation. Phys Rev X 2017;7(3):031017. 链接1

[61] Ziolkowski RW. Low profile, broadside radiating, electrically small Huygens source antennas. IEEE Access 2015;3:2644–51. 链接1

[62] Balanis CA. Antenna theory: analysis and design. 3rd ed. New York City: John Wiley & Sons; 2005. 链接1

[63] Ponnimbaduge Perera TD, Jayakody DNK, Sharma SK, Chatzinotas S, Li J. Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges. IEEE Commun Surv Tutor 2018;20(1):264–302. 链接1

[64] Olgun U, Chen CC, Volakis JL. Investigation of rectenna array configurations for enhanced RF power harvesting. IEEE Antennas Wirel Propag Lett 2011;10:262–5. 链接1

[65] Lee DJ, Lee SJ, Hwang IJ, Lee WS, Yu JW. Hybrid power combining rectenna array for wide incident angle coverage in RF energy transfer. IEEE Trans Microw Theory Tech 2017;65(9):3409–18. 链接1

[66] Parks AN, Smith JR. Sifting through the airwaves: efficient and scalable multiband RF harvesting. In: Proceedings of 2014 IEEE International Conference on RFID; 2014 Apr 8–10; Orlando, FL, USA; 2014. p. 74–81.

相关研究