期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第25卷 第6期 doi: 10.1016/j.eng.2021.09.020

离子分离用电荷Janus结构单价选择性阳离子交换膜

a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
b School of Environments, Harbin Institute of Technology, Harbin 150009, China
c School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China

收稿日期: 2021-04-23 修回日期: 2021-07-16 录用日期: 2021-09-01 发布日期: 2022-01-25

下一篇 上一篇

摘要

单价选择性阳离子交换膜(M-CEMs)已被广泛应用于环境修复和能量收集等领域,例如,从卤水和海水中提取Na+或Li+。然而,由于膜结构和材料的限制,M-CEMs存在渗透选择性低的问题。在此,我们提出了一种简单的方法以构建具有电荷Janus结构的新型M-CEMs,该结构由荷正电的均苯三甲酸/聚乙烯亚胺选择层和荷负电的商业阳离子交换膜(CEM)组成。选择性电渗析(SED)分析结果表明,具有电荷Janus结构的M-CEMs可以有效抑制多孔阳离子交换膜中存在的阴离子迁移问题,因而使这种具有电荷Janus结构的M-CEMs具有较高的渗透选择性和总阳离子通量。与最先进的单价选择性阳离子交换膜的分离性能相比,具有电荷Janus结构的M-CEMs对于Na+/Mg2+的最高渗透选择性可以达到145.77,这超过了目前单价选择性阳离子交换膜性能的“上限”,且对于Li+/Mg2+也具有优异的渗透选择性(14.11),在离子分离领域具有巨大的应用潜力。这项研究可以为具有电荷Janus结构的M-CEMs的设计提供新的见解,并应用于不同的环境和能源领域。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Wang B, Sun X, Xie Xu, Wang J, Li L, Jiao K. Experimental investigation of a novel cathode matrix flow field in proton exchange membrane fuel cell. ES Energy Environ 2021;12:95‒107. 链接1

[ 2 ] Kan A, Yuan Y, Zhu W, Cao D. Aging Model by permeation of moist air on service life of vacuum insulation panels (VIPs) with fibrous glass core. ES Energy Environ 2020;9:74‒81. 链接1

[ 3 ] Gao C, Deng W, Pan F, Feng X, Li Y. Superhydrophobic electrospun PVDF membranes with silanization and fluorosilanization co-functionalized CNTs for improved direct contact membrane distillation. Engineered Sci 2020;9:35‒43. 链接1

[ 4 ] Al-Amshawee S, Yunus MYBM, Azoddein AAM, Hassell DG, Dakhil IH, Hasan HA. Electrodialysis desalination for water and wastewater: a review. Chem Eng J 2020;380:122231. 链接1

[ 5 ] Campione A, Gurreri L, Ciofalo M, Micale G, Tamburini A, Cipollina A. Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications. Desalination 2018;434:121‒60. 链接1

[ 6 ] Mei Y, Tang CY. Recent developments and future perspectives of reverse electrodialysis technology: a review. Desalination 2018;425:156‒74. 链接1

[ 7 ] Jang J, Kang Y, Han JH, Jang K, Kim CM, Kim IS. Developments and future prospects of reverse electrodialysis for salinity gradient power generation: influence of ion exchange membranes and electrodes. Desalination 2020;491:114540. 链接1

[ 8 ] Hu H, Ding FC, Ding H, Liu J, Xiao M, Meng Y, et al. Sulfonated poly(fluorenyl ether ketone)/sulfonated alpha-zirconium phosphate nanocomposite membranes for proton exchange membrane fuel cells. Adv Compos Hybrid Mater 2020;3(4):498‒507. 链接1

[ 9 ] He Z, Wang G, Wang C, Guo L, Wei R, Song G, et al. Overview of anion exchange membranes based on ring opening metathesis polymerization (ROMP). Polym Rev 2021;61(4):689‒713. 链接1

[10] Chen Y, Zhang S, Jin J, Liu C, Liu Q, Jian X. Poly(phthalazinone ether ketone) amphoteric ion exchange membranes with low water transport and vanadium permeability for vanadium redox flow battery application. ACS Appl Energ Mater 2019;2(11):8207‒18. 链接1

[11] Li XF, Zhang HM, Mai ZS, Zhang H, Vankelecom I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 2011;4(4):1147‒60. 链接1

[12] Liu L, Wang C, He Z, Liu H, Hu Q, Naik N, et al. Bi-functional side chain architecture tuned amphoteric ion exchange membranes for highperformance vanadium redox flow batteries. J Membr Sci 2021;624:119118. 链接1

[13] Liu L, Wang C, He Z, Das R, Dong B, Xie X, et al. An overview of amphoteric ion exchange membranes for vanadium redox flow batteries. J Mater Sci Technol 2021;69:212‒27. 链接1

[14] Balaji J, Sethuraman MG, Roh SH, Jung HY. Recent developments in sol‒gel based polymer electrolyte membranes for vanadium redox flow batteries—a review. Polym Test 2020;89:106567. 链接1

[15] Luo T, Abdu S, Wessling M. Selectivity of ion exchange membranes: a review. J Membr Sci 2018;555:429‒54. 链接1

[16] Tang C, Bruening ML. Ion separations with membranes. J Polym Sci 2020;58(20):2831‒56. 链接1

[17] Sata T, Sata T, Yang W. Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. J Membr Sci 2002;206(1‒2):31‒60.

[18] Zhang Y, Wang L, Sun W, Hu Y, Tang H. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: a comprehensive review. J Ind Eng Chem 2020;81:7‒23. 链接1

[19] Wang W, Liu R, Tan M, Sun H, Niu QJ, Xu T, et al. Evaluation of the ideal selectivity and the performance of selectrodialysis by using TFC ion exchange membranes. J Membr Sci 2019;582:236‒45. 链接1

[20] Zhang Y, Guo J, Han G, Bai Y, Ge Q, Ma J, et al. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci Adv 2021;7(13): eabe8706. 链接1

[21] Zhang Y, Cheng X, Jiang Xu, Urban JJ, Lau CH, Liu S, et al. Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Mater Today 2020;36:40‒7. 链接1

[22] Yang X, Yuan L, Zhao Y, Yan L, Bai Y, Ma J, et al. Mussel-inspired structure evolution customizing membrane interface hydrophilization. J Membr Sci 2020;612:118471. 链接1

[23] Yang F, Sadam H, Zhang Y, Xia J, Yang X, Long J, et al. A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chem Eng Sci 2020;225:115845. 链接1

[24] He SS, Jiang X, Li SW, Ran F, Long J, Shao L. Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. AIChE J 2020;66(10):e16543. 链接1

[25] Guo J, Bao H, Zhang Y, Shen X, Kim JK, Ma J, et al. Unravelling intercalationregulated nanoconfinement for durably ultrafast sieving graphene oxide membranes. J Membr Sci 2021;619:118791. 链接1

[26] Sun B, Sun H, Li Y, Cui U, Cheng C. A systematic synthetic study of polyelectrolyte nanocapsules via crystallized miniemulsion nanodroplets. Engineered Sci 2019;5:39‒45. 链接1

[27] Liu L, Bernazzani P, Chu W, Luo SZ, Wang B, Guo Z. Polyelectrolyte assisted preparation of nanocatalysts for CO2 methanation. Engineered Sci 2018;2:74‒81. 链接1

[28] Jayanthi S. Studies on ionic liquid incorporated polymer blend electrolytes for energy storage applications. Adv Compos Hybrid Mater 2019;2(2): 351‒60. 链接1

[29] Wang Z, He S, Nguyen V, Riley KE. Ionic liquids as “green solvent and/or electrolyte” for energy interface. Engineered Sci 2020;11:3‒18. 链接1

[30] Angaiah S, Murugadoss V, Arunachalam S, Panneerselvam P, Krishnan S. Influence of various ionic liquids embedded electrospun polymer membrane electrolytes on the photovoltaic performance of DSSC. Engineered Sci 2018;4:44‒51. 链接1

[31] Rijnaarts T, Reurink DM, Radmanesh F, de Vos WM, Nijmeijer K. Layer-bylayer coatings on ion exchange membranes: effect of multilayer charge and hydration on monovalent ion selectivities. J Membr Sci 2019;570:513‒21. 链接1

[32] Zhang Y, Liu R, Lang Q, Tan M, Zhang Y. Composite anion exchange membrane made by layer-by-layer method for selective ion separation and water migration control. Sep Purif Technol 2018;192:278‒86. 链接1

[33] Zhao Y, Zhu J, Ding J, Van der Bruggen B, Shen J, Gao C. Electric-pulse layer-bylayer assembled of anion exchange membrane with enhanced monovalent selectivity. J Membr Sci 2018;548:81‒90. 链接1

[34] Zhao Y, Tang K, Liu H, Van der Bruggen B, Sotto Díaz A, Shen J, et al. An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity. J Membr Sci 2016;520:262‒71. 链接1

[35] Zhao Y, Liu Y, Wang C, Ortega E, Wang X, Xie YF, et al. Electric field-based ionic control of selective separation layers. J Mater Chem A 2020;8(8):4244‒51. 链接1

[36] Zhao Y, Gao C, Van der Bruggen B. Technology-driven layer-by-layer assembly of a membrane for selective separation of monovalent anions and antifouling. Nanoscale 2019;11(5):2264‒74. 链接1

[37] Zhang Z, Sui X, Li P, Xie G, Kong XY, Xiao K, et al. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J Am Chem Soc 2017;139(26):8905‒14. 链接1

[38] Gohil GS, Binsu VV, Shahi VK. Preparation and characterization of mono-valent ion selective polypyrrole composite ion-exchange membranes. J Membr Sci 2006;280(1‒2):210‒8. 链接1

[39] Ferreira CA, Casanovas J, Rodrigues MAS, Müller F, Armelin E, Alemán C. Transport of metallic ions through polyaniline-containing composite membranes. J Chem Eng Data 2010;55(11):4801‒7. 链接1

[40] Jiang W, Lin L, Xu X, Wang H, Xu P. Physicochemical and electrochemical characterization of cation-exchange membranes modified with polyethyleneimine for elucidating enhanced monovalent permselectivity of electrodialysis. J Membr Sci 2019;572:545‒56. 链接1

[41] Li J, Yuan S, Wang J, Zhu J, Shen J, Van der Bruggen B. Mussel-inspired modification of ion exchange membrane for monovalent separation. J Membr Sci 2018;553:139‒50. 链接1

[42] Gu K, Wang S, Li Y, Zhao X, Zhou Y, Gao C. A facile preparation of positively charged composite nanofiltration membrane with high selectivity and permeability. J Membr Sci 2019;581:214‒23. 链接1

[43] Zhang Y, Desmidt E, Van Looveren A, Pinoy L, Meesschaert B, Van der Bruggen B. Phosphate separation and recovery from wastewater by novel electrodialysis. Environ Sci Technol 2013;47(11):5888‒95. 链接1

[44] Tran ATK, Zhang Y, De Corte D, Hannes JB, Ye W, Mondal P, et al. P-recovery as calcium phosphate from wastewater using an integrated selectrodialysis/ crystallization process. J Clean Prod 2014;77:140‒51. 链接1

[45] Tran ATK, Zhang Y, Lin J, Mondal P, Ye W, Meesschaert B, et al. Phosphate preconcentration from municipal wastewater by selectrodialysis: effect of competing components. Sep Purif Technol 2015;141:38‒47. 链接1

[46] Ghyselbrecht K, Sansen B, Monballiu A, Ye ZL, Pinoy L, Meesschaert B. Cationic selectrodialysis for magnesium recovery from seawater on lab and pilot scale. Sep Purif Technol 2019;221:12‒22. 链接1

[47] Reig M, Valderrama C, Gibert O, Cortina JL. Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment: monovalent-divalent ions separation and acid and base production. Desalination 2016;399:88‒95. 链接1

[48] Chen B, Jiang C, Wang Y, Fu R, Liu Z, Xu T. Selectrodialysis with bipolar membrane for the reclamation of concentrated brine from RO plant. Desalination 2018;442:8‒15. 链接1

[49] Tang CY, Kwon YN, Leckie JO. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination 2009;242(1‒3):149‒67.

[50] Won SW, Kwak IS, Yun YS. The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution. Bioresour Technol 2014;160:93‒7. 链接1

[51] Ge L, Wu B, Li Q, Wang Y, Yu D, Wu L, et al. Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation. J Membr Sci 2016;498:192‒200. 链接1

[52] Hou L, Wu B, Yu D, Wang S, Shehzad MA, Fu R, et al. Asymmetric porous monovalent cation perm-selective membranes with an ultrathin polyamide selective layer for cations separation. J Membr Sci 2018;557:49‒57. 链接1

[53] Hou L, Pan J, Yu D, Wu B, Mondal AN, Li Q, et al. Nanofibrous composite membranes (NFCMs) for mono/divalent cations separation. J Membr Sci 2017;528:243‒50. 链接1

[54] Li J, Zhao ZJ, Yuan SS, Zhu J, Bruggen BV. High-performance thin-filmnanocomposite cation exchange membranes containing hydrophobic zeolitic imidazolate framework for monovalent selectivity. Appl Sci 2018;8(5):759. 链接1

[55] He Y, Ge L, Ge ZJ, Zhao Z, Sheng F, Liu X, et al. Monovalent cations permselective membranes with zwitterionic side chains. J Membr Sci 2018;563:320‒5. 链接1

[56] Shehzad MA, Wang Y, Yasmin A, Ge X, He Y, Liang X, et al. Biomimetic nanocones that enable high ion permselectivity. Angew Chem Int Ed 2019;58(36):12646‒54. 链接1

[57] Irfan M, Wang Y, Xu T. Novel electrodialysis membranes with hydrophobic alkyl spacers and zwitterion structure enable high monovalent/divalent cation selectivity. Chem Eng J 2020;383:123171. 链接1

[58] Pang X, Tao Y, Xu Y, Pan J, Shen J, Gao C. Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers. J Membr Sci 2020;595:117544. 链接1

[59] Xu T, Sheng F, Wu B, Shehzad MA, Yasmin A, Wang X, et al. Ti-exchanged UiO-66‒NH2-containing polyamide membranes with remarkable cation permselectivity. J Membr Sci 2020;615:118608. 链接1

[60] Xu T, Shehzad MA, Yu D, Li Q, Wu B, Ren X, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology. ChemSusChem 2019;12(12):2593‒7. 链接1

[61] Xu T, Shehzad MA, Wang X, Wu B, Ge L, Xu T. Engineering leaf-like UiO-66- SO3H membranes for selective transport of cations. Nano-Micro Lett 2020;12(1):51. 链接1

相关研究