期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第26卷 第7期 doi: 10.1016/j.eng.2022.03.009

糖医学——当前的技术发展水平/前沿科技

a Centre for Precision Health, Edith Cowan University, Perth, WA 6027, Australia
b Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
c School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
d The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China

收稿日期: 2022-01-06 修回日期: 2022-03-16 录用日期: 2022-04-06 发布日期: 2022-04-12

下一篇 上一篇

图片

Fig. 1

Fig. 2

参考文献

[ 1 ] Wang Y, Adua E, Russell A, Roberts P, Ge S, Zeng Q, et al. Glycomics and its application potential in precision medicine. In: Precision medicine in China. Washington, DC: American Association for the Advancement of Science; 2016. p. 36–9. 链接1

[ 2 ] Özdemir V, Arga KY, Aziz RK, Bayram M, Conley SN, Dandara C, et al. Digging deeper into precision/personalized medicine: cracking the sugar code, the third alphabet of life, and sociomateriality of the cell. OMICS 2020;24 (2):62–80. 链接1

[ 3 ] Hou H, Yang H, Liu P, Huang C, Wang M, Li Y, et al. Profile of immunoglobulin G N-glycome in COVID-19 patients: a case-control study. Front Immunol 2021;12:748566. 链接1

[ 4 ] Russell A, Wang W. The rapidly expanding nexus of immunoglobulin G Nglycomics, suboptimal health status, and precision medicine. Exp Suppl 2021;112:545–64. 链接1

[ 5 ] Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KTBG, et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 2013;32(10):1478–88. 链接1

[ 6 ] Zielinska DF, Gnad F, Wis´niewski JR, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 2010;141(5):897–907. 链接1

[ 7 ] Fournet M, Bonté F, Desmoulière A. Glycation damage: a possible hub for major pathophysiological disorders and aging. Aging Dis 2018;9(5):880–900. 链接1

[ 8 ] Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNActransferase gene family. Glycobiology 2012;22(6):736–56. 链接1

[ 9 ] Ondruskova N, Cechova A, Hansikova H, Honzik T, Jaeken J. Congenital disorders of glycosylation: still ‘‘hot” in 2020. BBA-Gen Subjects 2021;1865 (1):129751. 链接1

[10] Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 2012;13(7):448–62. 链接1

[11] Hansen L, Husein DM, Gericke B, Hansen T, Pedersen O, Tambe MA, et al. A mutation map for human glycoside hydrolase genes. Glycobiology 2020;30 (8):500–15. 链接1

[12] Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 2021;184(12):3109–24.e22. 链接1

[13] Štambuk J, Nakic´ N, Vucˇkovic´ F, Pucˇic´ -Bakovic´ M, Razdorov G, Trbojevic´ - Akmacˇic´ I, et al. Global variability of the human IgG glycome. Aging 2020;12 (15):15222–59. 链接1

[14] Yu X, Wang Y, Kristic J, Dong J, Chu Xi, Ge S, et al. Profiling IgG N-glycans as potential biomarker of chronological and biological ages: a community-based study in a Han Chinese population. Medicine 2016;95(28):e4112. 链接1

[15] Vucˇkovic´ F, Krištic´ J, Gudelj I, Teruel M, Keser T, Pezer M, et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol 2015;67(11):2978–89. 链接1

[16] Huang W, Giddens J, Fan SQ, Toonstra C, Wang LX. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc 2012;134(29):12308–18. 链接1

[17] Pagan JD, KitaokaM, Anthony RM. Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 2018;172(3):564–77.e13. 链接1

相关研究