期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第15卷 第8期 doi: 10.1016/j.eng.2022.05.011

红霉素发酵菌渣长期施用对土壤耐药基因的累积影响

a State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Khorgos 835007, China
d Institute for Biomedicine & the Centre for Antibiotic Resistance Research, University of Gothenburg, Göteborg, SE-413 46, Sweden
e Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia

收稿日期: 2021-12-15 修回日期: 2022-04-23 录用日期: 2022-05-24 发布日期: 2022-06-11

下一篇 上一篇

摘要

抗生素发酵生产过程产生的富含有机质的发酵菌渣具有资源化的潜力,但残留的高浓度抗生素限制了其资源化利用。本研究调研了一处工业规模的红霉素发酵菌渣(EFR)处理设施,并将一定条件下水热处理后的EFR作为有机肥,设置农业常规剂量和极端高剂量(3750~15 000 kg⋅hm−2),开展了连续三年的野外大田施用实验。水热处理有效地灭活了微生物,降解了DNA,红霉素的去除率达到约98%。菌渣有机肥的施用向土壤引入了持续三年的μg∙kg−1水平的亚抑制红霉素压力。土壤宏基因组测序发现,农业常规剂量施用对土壤耐药基因影响较弱,但极端高剂量施用对土壤耐药基因产生累积影响。具体而言,土壤耐药基因丰度和多样性没有受到单次(第一年)施用的影响,但在第二年和第三年期间逐渐发生变化,大环内酯类耐药基因被选择性富集。土壤细菌群落和可移动遗传元件的变化趋势与耐药基因相似,相关性分析和结构方程模型均表明三年期间红霉素、细菌群落、可移动遗传元件与耐药基因的关联性逐渐增强。被富集的大环内酯类耐药基因以RNA甲基化酶基因erm和外排泵基因mac为主;宏基因组组装与分箱结果表明,水平转移在erm基因的传播中发挥重要作用,mac基因的富集则主要受垂直传播的影响。本研究揭示了亚抑制水平红霉素长期暴露对土壤耐药基因产生累积影响的机制,菌渣中抗生素的高效去除和菌渣环境耐药性影响的长期评价对未来菌渣安全处置与资源化利用至关重要。

补充材料

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Larsson DGJ. Pollution from drug manufacturing: review and perspectives. Philos Trans R Soc Lond B Biol Sci 2014;369(1656):20130571. 链接1

[ 2 ] Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 2015;13(5):310‒7. 链接1

[ 3 ] Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol 2022;20(5):257‒69. 链接1

[ 4 ] Bewick MWM. Use of antibiotic fermentation wastes as fertilizers for tomatoes. J Agric Sci 1979;92(3):669‒74. 链接1

[ 5 ] Zhang Q, Ying G, Pan C, Liu Y, Zhao J. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 2015;49(11):6772‒82. 链接1

[ 6 ] Ding Y, Zhang W, Gu C, Xagoraraki I, Li H. Determination of pharmaceuticals in biosolids using accelerated solvent extraction and liquid chromatography/tandem mass spectrometry. J Chromatogr A 2011;1218(1):10‒6. 链接1

[ 7 ] Carvalho RN, Ceriani L, Ippolito A, Lettieri T. Development of the 1st Watch List under the Environmental Quality Standards Directive. Report. Luxembourg: Publications Office of the European Union. 2015. Report No.: EUR 27142 EN.

[ 8 ] Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int 2016;86:140‒9. 链接1

[ 9 ] Tang M, Gu Y, Wei D, Tian Z, Tian Y, Yang M, et al. Enhanced hydrolysis of fermentative antibiotics in production wastewater: hydrolysis potential prediction and engineering application. Chem Eng J 2020;391:123626. 链接1

[10] He Y, Tian Z, Yi Q, Zhang Yu, Yang M. Impact of oxytetracycline on anaerobic wastewater treatment and mitigation using enhanced hydrolysis pretreatment. Water Res 2020;187:116408. 链接1

[11] Tang M, Li F, Yang M, Zhang Y. Degradation of kanamycin from production wastewater with high-concentration organic matrices by hydrothermal treatment. J Environ Sci (China) 2020;97:11‒8. 链接1

[12] Yi Q, Zhang Y, Gao Y, Tian Z, Yang M. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: simultaneous reduction of COD and ARGs. Water Res 2017;110:211‒7. 链接1

[13] Yousefifar A, Baroutian S, Farid MM, Gapes DJ, Young BR. Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: a review. Water Res 2017;123:607‒22. 链接1

[14] Cai C, Hua Yu, Li H, Li L, Dai L, Liu H, et al. Hydrothermal treatment of erythromycin fermentation residue: harmless performance and bioresource properties. Resour Conserv Recycling 2020;161:104952. 链接1

[15] Zhang Y, Liu H, Dai X, Cai C, Wang J, Wang M, et al. Impact of application of heat-activated persulfate oxidation treated erythromycin fermentation residue as a soil amendment: soil chemical properties and antibiotic resistance. Sci Total Environ 2020;736:139668. 链接1

[16] Luan X, Han Z, Shen Y, Yang M, Zhang Y. Assessing the effect of treated erythromycin fermentation residue on antibiotic resistome in soybean planting soil: in situ field study. Sci Total Environ 2021;779:146329. 链接1

[17] Topp E, Renaud J, Sumarah M, Sabourin L. Reduced persistence of themacrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field. Sci Total Environ 2016;562:136‒44. 链接1

[18] Lau CHF, Tien YC, Stedtfeld RD, Topp E. Impacts of multi-year field exposure of agricultural soil to macrolide antibiotics on the abundance of antibiotic resistance genes and selected mobile genetic elements. Sci Total Environ 2020;727:138520. 链接1

[19] Chow LKM, Ghaly TM, Gillings MR. A survey of sub-inhibitory concentrations of antibiotics in the environment. J Environ Sci 2021;99:21‒7. 链接1

[20] Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 2014;12(7):465‒78. 链接1

[21] Jørgensen KM, Wassermann T, Jensen PØ, Hengzuang W, Molin S, Høiby N, et al. Sublethal ciprofloxacin treatment leads to rapid development of high-level ciprofloxacin resistance during long-term experimental evolution of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013;57(9):4215‒21. 链接1

[22] Andersson DI, Hughes D. Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resist Updat 2012;15(3):162‒72. 链接1

[23] Xie W, Yuan S, Xu M, Yang X, Shen Q, Zhang W, et al. Long-term effects of manure and chemical fertilizers on soil antibiotic resistome. Soil Biol Biochem 2018;122:111‒9. 链接1

[24] Wang Y, Li S, Zhang F, Lu Y, Yang B, Zhang F, et al. Study of matrix effects for liquid chromatography-electrospray ionization tandem mass spectrometric analysis of 4 aminoglycosides residues in milk. J Chromatogr A 2016;‍1437:8‒14.

[25] Fouhy F, Clooney AG, Stanton C, Claesson MJ, Cotter PD. 16S rRNA gene sequencing of mock microbial populations—impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiol 2016;16:123. 链接1

[26] Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013;20(9):1131‒9. 链接1

[27] Yin X, Jiang XT, Chai B, Li L, Yang Y, Cole JR, et al. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 2018;34(13):2263‒70. 链接1

[28] Ju F, Beck K, Yin X, Maccagnan A, McArdell CS, Singer HP, et al. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME J 2019;13(2):346‒60. 链接1

[29] Angly FE, Dennis PG, Skarshewski A, Vanwonterghem I, Hugenholtz P, Tyson GW. CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome 2014;2:11. 链接1

[30] Yang Y, Jiang X, Chai B, Ma L, Li B, Zhang A, et al. ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics 2016;32(15):2346‒51. 链接1

[31] Pärnänen K, Karkman A, Hultman J, Lyra C, Bengtsson-Palme J, Larsson DGJ, et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun 2018;9:3891. 链接1

[32] Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 2017;14(4):417‒9. 链接1

[33] Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31(10):1674‒6. 链接1

[34] Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 2018;6:158. 链接1

[35] Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2016;32(4):605‒7. 链接1

[36] Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017;2(11):1533‒42. 链接1

[37] Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019;36:1925‒7. 链接1

[38] Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020;48(D1):D517‒25.

[39] Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30(14):2068‒9. 链接1

[40] Yuan L, Wang Y, Zhang L, Palomo A, Zhou J, Smets BF, et al. Pathogenic and indigenous denitrifying bacteria are transcriptionally active and key multi-antibiotic-resistant players in wastewater treatment plants. Environ Sci Technol 2021;55(15):10862‒74. 链接1

[41] Rice EW, Wang P, Smith AL, Stadler LB. Determining hosts of antibiotic resistance genes: a review of methodological advances. Environ Sci Technol Lett 2020;7(5):282‒91. 链接1

[42] Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol 2001;26(1):32‒46. 链接1

[43] Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol 2011;12(6):R60. 链接1

[44] Peres-Neto PR, Jackson DA. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 2001;129(2):169‒78. 链接1

[45] Smouse PE, Long JC, Sokal RR. Multiple-regression and correlation extensions of the mantel test of matrix correspondence. Syst Zool 1986;35(4):627‒32. 链接1

[46] Byrne BM. Structural equation modeling with amos: basic concepts, applications, and programming. Mahwah: Lawrence Erlbaum Associates Publishers; 2001.

[47] Schermelleh-Engel K, Moosbrugger H, Müller H. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychol Res Online 2003;8:23‒74. 链接1

[48] Senta I, Kostanjevecki P, Krizman-Matasic I, Terzic S, Ahel M. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: possible importance of metabolites, synthesis byproducts, and transformation products. Environ Sci Technol 2019;53(13):7463‒72. 链接1

[49] Muurinen J, Stedtfeld R, Karkman A, Pärnänen K, Tiedje J, Virta M. Influence of manure application on the environmental resistome under finnish agricultural practice with restricted antibiotic use. Environ Sci Technol 2017;‍51(11):5989‒99. 链接1

[50] Bengtsson-Palme J, Larsson DGJ. Antibiotic resistance genes in the environment: prioritizing risks. Nat Rev Microbiol 2015;13(6):396. 链接1

[51] Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. Nomenclature for macrolide and macrolide‍‒‍lincosamide‍‒‍streptogramin B resistance determinants. Antimicrob Agents Chemother 1999;43(12):2823‒30. 链接1

[52] Saribas Z, Tunckanat F, Pinar A. Prevalence of erm genes encoding macrolide-lincosamide-streptogramin (MLS) resistance among clinical isolates of Staphylococcus aureus in a Turkish university hospital. Clin Microbiol Infect 2006;12(8):797‒9. 链接1

[53] Whitehead TR, Cotta MA. Sequence analyses of a broad host-range plasmid containing ermT from a tylosin-resistant Lactobacillus sp. isolated from swine feces. Curr Microbiol 2001;43(1):17‒20. 链接1

[54] Tsai JC, Hsueh PR, Chen HJ, Tseng SP, Chen PY, Teng LJ. The erm(T) gene is flanked by IS1216V in inducible erythromycin-resistant Streptococcus gallolyticus subsp. pasteurianus. Antimicrob Agents Chemother 2005;‍49(10):4347‒50. 链接1

[55] Bethke JH, Davidovich A, Cheng L, Lopatkin AJ, Song W, Thaden JT, et al. Environmental and genetic determinants of plasmid mobility in pathogenic Escherichia coli. Sci Adv 2020;6(4):eaax3173. 链接1

[56] Kobayashi N, Nishino K, Yamaguchi A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 2001;183(19):5639‒44. 链接1

[57] Greene NP, Kaplan E, Crow A, Koronakis V. Antibiotic resistance mediated by the macb abc transporter family: a structural and functional perspective. Front Microbiol 2018;9:950. 链接1

[58] Heß S, Gallert C. Growth behavior of E. coli, Enterococcus and Staphylococcus species in the presence and absence of sub-inhibitory antibiotic concentrations: consequences for interpretation of culture-based data. Microb Ecol 2016;72(4):898‒908. 链接1

[59] Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 2011;7(7):e1002158. 链接1

[60] Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, et al. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol 2021;19(10):e3001225. 链接1

[61] Zhang J, Sui Q, Tong J, Zhong H, Wang Y, Chen M, et al. Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts. Environ Int 2018;118:34‒43. 链接1

[62] Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci USA 2014;111(42):15202‒7. 链接1

[63] Yang Y, Li B, Ju F, Zhang T. Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach. Environ Sci Technol 2013;47(18):10197‒205. 链接1

[64] Garner E, Chen C, Xia K, Bowers J, Engelthaler DM, McLain J, et al. Metagenomic characterization of antibiotic resistance genes in full-scale reclaimed water distribution systems and corresponding potable systems. Environ Sci Technol 2018;52(11):6113‒25. 链接1

[65] Rutgersson C, Ebmeyer S, Lassen SB, Karkman A, Fick J, Kristiansson E, et al. Long-term application of Swedish sewage sludge on farmland does not cause clear changes in the soil bacterial resistome. Environ Int 2020;137:105339. 链接1

[66] Department for Environment Food & Rural Affairs. Fertiliser manual (RB209). 8th ed. Norwich: The Stationery Office (TSO); 2010. 链接1

[67] Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021;2(4):100180. 链接1

[68] Tang M, Dou X, Tian Z, Yang M, Zhang Y. Enhanced hydrolysis of streptomycin from production wastewater using CaO/MgO solid base catalysts. Chem Eng J 2019;355:586‒93. 链接1

[69] Lang Q, Zhang B, Liu Z, Chen Z, Xia Y, Li D, et al. Co-hydrothermal carbonization of corn stalk and swine manure: combustion behavior of hydrochar by thermogravimetric analysis. Bioresour Technol 2019;271:75‒83. 链接1

相关研究