期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第31卷 第12期 doi: 10.1016/j.eng.2023.07.013

用于实时皮肤创面愈合的超强工程化蛋白凝聚体黏合剂

a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
c Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
d Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
e Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
 

收稿日期: 2022-10-19 修回日期: 2023-05-30 录用日期: 2023-07-10 发布日期: 2023-09-10

下一篇 上一篇

摘要

黏合剂作为生物医学工程中的一种先进方式,因其独特的伤口管理行为而备受关注。然而,由于当前的黏合剂系统界面粘合强度较弱,要实现牢固的黏合仍是一项巨大的挑战。此外,传统化学黏合剂缺乏动态适应性,限制了伤口周围的新生细胞向该部分迁移,导致组织再生效果不佳。在此,我们精心设计了一种具有强大黏附力和实时促皮肤愈合效果的细胞外基质衍生的生物复合黏合剂。在嵌合蛋白和天然DNA间超分子相互作用的积极参与下,液-液相分离被很好地用来驱动生物复合黏合剂的组装,从而获得增强的黏合性能。该生物黏合剂具有出色的黏合和止血性能,其中,剪切黏合强度约18 MPa,优于已报道的同类产品。此外,工程生物衍生成分赋予了该黏合材料优异的生物相容性和特殊的生物学功能,包括促进细胞增殖和迁移,因此使用这种材料最终可实现实时原位皮肤再生。这项工作为功能化生物黏合剂工程和生物医学转化开辟了新的途径。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Taboada GM, Yang K, Pereira MJN, Liu SS, Hu Y, Karp JM, et al. Overcoming the translational barriers of tissue adhesives. Nat Rev Mater 2020;5(4):310‒29. 链接1

[ 2 ] Zhu J, Jin Q, Zhao H, Zhu W, Liu Z, Chen Q. Reactive oxygen species scavenging sutures for enhanced wound sealing and repair. Small Struct 2021;2(7):2100002. 链接1

[ 3 ] Ouyang J, Ji X, Zhang X, Feng C, Tang Z, Kong N, et al. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc Natl Acad Sci USA 2020;117(46):28667‒77. 链接1

[ 4 ] Chen X, Zhang J, Chen G, Xue Y, Zhang J, Liang X, et al. Hydrogel bioadhesives with extreme acid-tolerance for gastric perforation repairing. Adv Funct Mater 2022;32(29):2202285. 链接1

[ 5 ] Shirzaei Sani E, Kheirkhah A, Rana D, Sun Z, Foulsham W, Sheikhi A, et al. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Sci Adv 2019;5(3):eaav1281. 链接1

[ 6 ] Nam S, Mooney D. Polymeric tissue adhesives. Chem Rev 2021;121(18):11336‒84. 链接1

[ 7 ] Pinnaratip R, Bhuiyan MSA, Meyers K, Rajachar RM, Lee BP. Multifunctional biomedical adhesives. Adv Healthc Mater 2019;8(11):1801568. 链接1

[ 8 ] Balcioglu S, Gurses C, Ozcan I, Yildiz A, Koytepe S, Parlakpinar H, et al. Photocrosslinkable gelatin/collagen based bioinspired polyurethane-acrylate bone adhesives with biocompatibility and biodegradability. Int J Biol Macromol 2021;192:1344‒56. 链接1

[ 9 ] Gao J, Yu X, Wang X, He Y, Ding J. Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine. Engineering 2022;13:31‒45. 链接1

[10] Feng C, Ouyang J, Tang Z, Kong N, Liu Y, Fu L, et al. Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter 2020;3(1):127‒44. 链接1

[11] Wang X, Tang M. Bioceramic materials with ion-mediated multifunctionality for wound healing. Smart Med 2022;1(1):e20220032. 链接1

[12] Bal-Ozturk A, Cecen B, Avci-Adali M, Topkaya SN, Alarcin E, Yasayan G, et al. Tissue adhesives: from research to clinical translation. Nano Today 2021;36:101049. 链接1

[13] Bouten PJM, Zonjee M, Bender J, Yauw STK, Van Goor H, Van Hest JCM, et al. The chemistry of tissue adhesive materials. Prog Polym Sci 2014;39(7):1375‒405. 链接1

[14] Hofman AH, Van Hees IA, Yang J, Kamperman M. Bioinspired underwater adhesives by using the supramolecular toolbox. Adv Mater 2018;30(19):1704640. 链接1

[15] Zhao Q, Lee DW, Ahn BK, Seo S, Kaufman Y, Israelachvili JN, et al. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat Mater 2016;15(4):407‒12. 链接1

[16] Sun J, Chen J, Liu K, Zeng H. Mechanically strong proteinaceous fibers: engineered fabrication by microfluidics. Engineering. 2021;7(5):615‒23. 链接1

[17] Chang R, Yan X. Supramolecular immunotherapy of cancer based on the self-assembling peptide design. Small Struct 2020;1(2):2000068. 链接1

[18] Wang B, Chen H, Liu T, Shi S, Russell TP. Host‒guest molecular recognition at liquid‒liquid interfaces. Engineering. 2021;7(5):603‒14. 链接1

[19] Sun J, Zhang J, Zhao L, Wan S, Wu B, Ma C, et al. Contribution of hydrogen-bond nanoarchitectonics to switchable photothermal‒mechanical properties of bioinorganic fibers. CCS Chem. 2023;5(5):1242‒50. 链接1

[20] Li J, Sun Y, Liang Y, Ma J, Li B, Ma C, et al. Extracellular elastin molecule modulates Alzheimer’s aβ dynamics in vitro and in vivo by affecting microglial activities. CCS Chem. 2021;3(7):1830‒7. 链接1

[21] Sun J, Han J, Wang F, Liu K, Zhang H. Bioengineered protein-based adhesives for biomedical applications. Chemistry 2022;28(1):e202102902. 链接1

[22] Ma C, Sun J, Li B, Feng Y, Sun Y, Xiang L, et al. Ultra-strong bio-glue from genetically engineered polypeptides. Nat Commun 2021;12(1):3613. 链接1

[23] Brennan MJ, Kilbride BF, Wilker JJ, Liu JC. A bioinspired elastin-based protein for a cytocompatible underwater adhesive. Biomaterials 2017;124:116‒25. 链接1

[24] Su J, Liu B, He H, Ma C, Wei B, Li M, et al. Engineering high strength and super-toughness of unfolded structural proteins and their extraordinary anti-adhesion performance for abdominal hernia repair. Adv Mater 2022;34(19):2200842. 链接1

[25] Wei Z, Sun J, Lu S, Liu Y, Wang B, Zhao L, et al. An engineered protein‒Au bioplaster for efficient skin tumor therapy. Adv Mater 2022;34(16):2110062. 链接1

[26] Zhang Z, Zhou J, Liu C, Zhang J, Shibata Y, Kong N, et al. Emerging biomimetic nanotechnology in orthopedic diseases: progress, challenges, and opportunities. Trends Chem 2022;4(5):420‒36. 链接1

[27] Zhou J, Zhang Z, Joseph J, Zhang X, Ferdows BE, Patel DN, et al. Biomaterials and nanomedicine for bone regeneration: progress and future prospects. Exploration 2021;1(2):20210011. 链接1

[28] Zhang X, Li L, Ouyang J, Zhang L, Xue J, Zhang H, et al. Electroactive electrospun nanofibers for tissue engineering. Nano Today 2021;39:101196. 链接1

[29] Li L, Zhang X, Zhou J, Zhang L, Xue J, Tao W, et al. Non-invasive thermal therapy for tissue engineering and regenerative medicine. Small 2022;18(36):2107705. 链接1

[30] Shan J, Che J, Song C, Zhao Y. Emerging antibacterial nanozymes for wound healing. Smart Med. . . 10.1002/smmd.20220025

[31] Ren Y, Zhang Y, Liu Y, Wu Q, Hu HG, Li J, et al. Highly reliable and efficient encoding systems for hexadecimal polypeptide-based data storage. Fundam Res 2023;3(2):298‒304. 链接1

[32] Kim H, Kong WH, Seong KY, Sung DK, Jeong H, Kim JK, et al. Hyaluronate‒epidermal growth factor conjugate for skin wound healing and regeneration. Biomacromolecules 2016;17(11):3694‒705. 链接1

[33] Shao M, Fan Y, Zhang K, Hu Y, Xu FJ. One nanosystem with potent antibacterial and gene-delivery performances accelerates infected wound healing. Nano Today 2021;39:101224. 链接1

[34] Zhao W, Li Y, Zhang X, Zhang R, Hu Y, Boyer C, et al. Photo-responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing. J Control Release 2020;323:24‒35. 链接1

[35] Sun J, Xiao L, Li B, Zhao K, Wang Z, Zhou Y, et al. Genetically engineered polypeptide adhesive coacervates for surgical applications. Angew Chem Int Ed Engl 2021;60(44):23687‒94. 链接1

[36] Wan S, Cheng W, Li J, Wang F, Xing X, Sun J, et al. Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Res 2022;15(10):9192‒8. 链接1

[37] Xiao L, Wang Z, Sun Y, Li B, Wu B, Ma C, et al. An artificial phase-transitional underwater bioglue with robust and switchable adhesion performance. Angew Chem Int Ed Engl 2021;60(21):12082‒9. 链接1

[38] Li J, Celiz AD, Yang J, Yang Q, Wamala I, Whyte W, et al. Tough adhesives for diverse wet surfaces. Science 2017;357:378‒81. 链接1

[39] Xi S, Tian F, Wei G, He X, Shang Y, Ju Y, et al. Reversible dendritic-crystal-reinforced polymer gel for bioinspired adaptable adhesive. Adv Mater 2021;33(40):2103174. 链接1

[40] Harris TI, Gaztambide DA, Day BA, Brock CL, Ruben AL, Jones JA, et al. Sticky situation: an investigation of robust aqueous-based recombinant spider silk protein coatings and adhesives. Biomacromolecules 2016;17(11):3761‒72. 链接1

[41] Annabi N, Zhang YN, Assmann A, Sani ES, Cheng G, Lassaletta AD, et al. Engineering a highly elastic human protein-based sealant for surgical applications. Sci Transl Med 2017;9(410):eaai7466. 链接1

[42] Zhang D, Xu Z, Li H, Fan C, Cui C, Wu T, et al. Fabrication of strong hydrogen-bonding induced coacervate adhesive hydrogels with antibacterial and hemostatic activities. Biomater Sci 2020;8(5):1455‒63. 链接1

[43] Zhang Q, Shi CY, Qu DH, Long YT, Feringa BL, Tian H. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Sci Adv 2018;4(7):eaat8192. 链接1

[44] Xu J, Li X, Li J, Li X, Li B, Wang Y, et al. Wet and functional adhesives from one-step aqueous self-assembly of natural amino acids and polyoxometalates. Angew Chem Int Ed Engl 2017;56(30):8731‒5. 链接1

[45] Wonderly WR, Cristiani TR, Cunha KC, Degen GD, Shea JE, Waite JH. Dueling backbones: comparing peptoid and peptide analogues of a mussel adhesive protein. Macromolecules 2020;53(16):6767‒79. 链接1

[46] Liu X, Zhang Q, Gao Z, Hou R, Gao G. Bioinspired adhesive hydrogel driven by adenine and thymine. ACS Appl Mater Interfaces 2017;9(20):17645‒52. 链接1

[47] Meng Z, Liu Q, Zhang Y, Sun J, Yang C, Li H, et al. Highly stiff and stretchable DNA liquid crystalline organogels with super plasticity, ultrafast self-healing, and magnetic response behaviors. Adv Mater 2022;34(3):2106208. 链接1

[48] Li F, Tang J, Geng J, Luo D, Yang D. Polymeric DNA hydrogel: design, synthesis and applications. Prog Polym Sci 2019;98:101163. 链接1

[49] Zhao X, Liang Y, Huang Y, He J, Han Y, Guo B. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv Funct Mater 2020;30(17):1910748. 链接1

[50] Chen W, Wang R, Xu T, Ma X, Yao Z, Chi B, et al. A mussel-inspired poly(γ-glutamic acid) tissue adhesive with high wet strength for wound closure. J Mater Chem B 2017;5(28):5668‒78. 链接1

[51] Pei X, Zhang H, Zhou Y, Zhou L, Fu J. Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater Horiz 2020;7(7):1872‒82. 链接1

[52] Fan H, Gong JP. Bioinspired underwater adhesives. Adv Mater 2021;33(44):2102983. 链接1

[53] Wei W, Tan Y, Martinez Rodriguez NR, Yu J, Israelachvili JN, Waite JH. A mussel-derived one component adhesive coacervate. Acta Biomater 2014;10(4):1663‒70. 链接1

[54] Filippidi E, Cristiani TR, Eisenbach CD, Waite JH, Israelachvili JN, Ahn BK, et al. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 2017;358:502‒5. 链接1

[55] Lang N, Pereira MJ, Lee Y, Friehs I, Vasilyev NV, Feins EN, et al. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci Transl Med 2014;6:218ra6‒218ra6. 链接1

[56] Choi JK, Jang JH, Jang WH, Kim J, Bae IH, Bae J, et al. The effect of epidermal growth factor (EGF) conjugated with low-molecular-weight protamine (LMWP) on wound healing of the skin. Biomaterials 2012;33(33):8579‒90. 链接1

[57] Xi Y, Ge J, Guo Y, Lei B, Ma PX. Biomimetic elastomeric polypeptide-based nanofibrous matrix for overcoming multidrug-resistant bacteria and enhancing full-thickness wound healing/skin regeneration. ACS Nano 2018;12(11):10772‒84. 链接1

[58] Hu B, Gao M, Boakye-Yiadom KO, Ho W, Yu W, Xu X, et al. An intrinsically bioactive hydrogel with on-demand drug release behaviors for diabetic wound healing. Bioact Mater 2021;6(12):4592‒606. 链接1

[59] Peng X, Li Y, Li T, Li Y, Deng Y, Xie X, et al. Coacervate-derived hydrogel with effective water repulsion and robust underwater bioadhesion promotes wound healing. Adv Sci 2022;9(31):2203890. 链接1

[60] Peng Q, Chen J, Zeng Z, Wang T, Xiang L, Peng X, et al. Adhesive coacervates driven by hydrogen-bonding interaction. Small 2020;16(43):2004132. 链接1

[61] Koehler J, Brandl FP, Goepferich AM. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J 2018;100:1‒11. 链接1

[62] Ying R, Huang WC, Mao X. Synthesis of agarose-based multistimuli-responsive hydrogel dressing for accelerated wound healing. ACS Biomater Sci Eng 2022;8(1):293‒302. 链接1

[63] Jiang F, Chi Z, Ding Y, Quan M, Tian Y, Shi J, et al. Wound dressing hydrogel of Enteromorpha prolifera polysaccharide-polyacrylamide composite: a facile transformation of marine blooming into biomedical material. ACS Appl Mater Interfaces 2021;13(12):14530‒42. 链接1

相关研究