期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第2期 doi: 10.15302/J-ENG-2015062

基于细胞打印的三维MCF-7乳腺癌细胞球高通量构建研究

1 State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
3 The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China

收稿日期: 2015-02-09 修回日期: 2015-03-25 录用日期: 2015-03-30 发布日期: 2015-06-30

下一篇 上一篇

摘要

基于细胞球的体外组织模型在生理病理机理和药物筛选方面具有重要的研究意义和广阔的应用前景,利用微纳生物制造技术可控构建细胞球已吸引了越来越多研究者的关注。微孔板法作为一种简单易行的细胞球构建方法经常被研究者采用,但目前的微孔板法存在结构制备和可控性不足、细胞种植不均匀以及细胞容易流失等问题。本文利用自行搭建的细胞打印技术制备载细胞的明胶微凝胶作为模板,构建了带有凹面微孔阵列的聚乙二醇二甲基丙烯酸酯水凝胶微孔板芯片并原位形成了乳腺癌细胞球。本方法操作灵活、可控性好,避免了细胞种植不均匀和细胞流失等问题,在组织工程、再生医学以及药物筛选等研究具有重要的应用价值。

图片

图1

图2

图3

图4

参考文献

[ 1 ] T. M. Achilli, J. Meyer, J. R. Morgan. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin. Biol. Ther., 2012, 12(10): 1347−1360 链接1

[ 2 ] M. Rimann, U. Graf-Hausner. Synthetic 3D multicellular systems for drug development. Curr. Opin. Biotechnol., 2012, 23(5): 803−809 链接1

[ 3 ] L. Wang, Engineering three-dimensional cardiac microtissues for potential drug screening applications. Curr. Med. Chem., 2014, 21(22): 2497−2509 链接1

[ 4 ] J. Rouwkema, J. de Boer, C. A. van Blitterswijk. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng., 2006, 12(9): 2685−2693 链接1

[ 5 ] E. Fennema, N. Rivron, J. Rouwkema, C. van Blitterswijk, J. de Boer. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol., 2013, 31(2): 108−115 链接1

[ 6 ] K. Takayama, 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials, 2013, 34(7): 1781−1789 链接1

[ 7 ] P. R. Baraniak, T. C. McDevitt. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res., 2012, 347(3): 701−711 链接1

[ 8 ] A. P. Napolitano, Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Biotechniques, 2007, 43(4): 494, 496−500

[ 9 ] D. M. Dean, J. R. Morgan. Cytoskeletal-mediated tension modulates the directed self-assembly of microtissues. Tissue Eng. Part A, 2008, 14(12): 1989−1997 链接1

[10] J. Liu, Soft fibrin gels promote selection and growth of tumorigenic cells. Nat. Mater., 2012, 11(8): 734−741 链接1

[11] J. Friedrich, C. Seidel, R. Ebner, L. A. Kunz-Schughart. Spheroid-based drug screen: Considerations and practical approach. Nat. Protoc., 2009, 4(3): 309−324 链接1

[12] H. F. Chan, Y. Zhang, Y. P. Ho, Y. L. Chiu, Y. Jung, K. W. Leong. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci. Rep., 2013, 3: 3462

[13] F. Langenbach, Generation and differentiation of microtissues from multipotent precursor cells for use in tissue engineering. Nat. Protoc., 2011, 6(11): 1726−1735 链接1

[14] M. Inamori, H. Mizumoto, T. Kajiwara. An approach for formation of vascularized liver tissue by endothelial cell-covered hepatocyte spheroid integration. Tissue Eng. Part A, 2009, 15(8): 2029−2037 链接1

[15] S. F. Wong, D. Y. No, Y. Y. Choi, D. S. Kim, B. G. Chung, S. H. Lee. Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model. Biomaterials, 2011, 32(32): 8087−8096 链接1

[16] D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, D. E. Ingber. Reconstituting organ-level lung functions on a chip. Science, 2010, 328(5986): 1662−1668 链接1

[17] D. Huh, Y. S. Torisawa, G. A. Hamilton, H. J. Kim, D. E. Ingber. Microengineered physiological biomimicry: Organs-on-chips. Lab Chip, 2012, 12(12): 2156−2164 链接1

[18] G. Wang, Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med., 2014, 20(6): 616−623 链接1

[19] R. A. Rezende, Scalable biofabrication of tissue spheroids for organ printing. Procedia CIRP, 2013, 5: 276−281 链接1

[20] R. J. Thomas, The effect of three-dimensional co-culture of hepatocytes and hepatic stellate cells on key hepatocyte functions in vitro. Cells Tissues Organs (Print), 2005, 181(2): 67−79 链接1

[21] Y. C. Tung, A. Y. Hsiao, S. G. Allen, Y. S. Torisawa, M. Ho, S. Takayama. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst, 2011, 136(3): 473−478 链接1

[22] G. R. Souza, Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol., 2010, 5(4): 291−296 链接1

[23] T. Liu, M. Winter, B. Thierry. Quasi-spherical microwells on superhydrophobic substrates for long term culture of multicellular spheroids and high throughput assays. Biomaterials, 2014, 35(23): 6060−6068 链接1

[24] S. E. Yeon, Application of concave microwells to pancreatic tumor spheroids enabling anticancer drug evaluation in a clinically relevant drug resistance model. PLoS ONE, 2013, 8(9): e73345 链接1

[25] L. Kang, M. J. Hancock, M. D. Brigham, A. Khademhosseini. Cell confinement in patterned nanoliter droplets in a microwell array by wiping. J. Biomed. Mater. Res. A, 2010, 93(2): 547−557

[26] H. Tekin, M. Anaya, M. D. Brigham, C. Nauman, R. Langer, A. Khademhosseini. Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab Chip, 2010, 10(18): 2411−2418 链接1

[27] C. Kim, J. H. Bang, Y. E. Kim, S. H. Lee, J. Y. Kang. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Lab Chip, 2012, 12(20): 4135−4142 链接1

[28] C. Kim, 3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body. Lab Chip, 2011, 11(5): 874−882 链接1

[29] H. C. Moeller, M. K. Mian, S. Shrivastava, B. G. Chung, A. Khademhosseini. A microwell array system for stem cell culture. Biomaterials, 2008, 29(6): 752−763 链接1

[30] Y. S. Hwang, B. G. Chung, D. Ortmann, N. Hattori, H. C. Moeller, A. Khademhosseini. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. U.S.A., 2009, 106(40): 16978−16983 链接1

[31] Y. Xia, G. M. Whitesides. Soft lithography. Annu. Rev. Mater. Sci., 1998, 28(1): 153−184 链接1

[32] Y. Y. Choi, B. G. Chung, D. H. Lee, A. Khademhosseini, J. H. Kim, S. H. Lee. Controlled-size embryoid body formation in concave microwell arrays. Biomaterials, 2010, 31(15): 4296−4303 链接1

[33] A. Y. Hsiao, Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials, 2009, 30(16): 3020−3027 链接1

相关研究