《1. 引言》

1. 引言

二十二碳六烯酸(DHA)是一种22:6 ω-3脂肪酸(FA),它拥有独特的分子结构和多个双键,主要存在于大脑细胞膜中,对神经和视网膜组织的发育至关重要[1,2]。胎儿、新生儿和儿童在大脑发育期若缺乏DHA,可能会造成神经生理学方面的疾病(如认知障碍、焦虑症等)和视觉功能的降低[3,4]。对于成年人,DHA在维持认知功能和情绪表现方面也起着重要的作用[5]

一般,DHA主要来源于富含α-亚麻酸(α-LNA;18:3 ω-3)的饮食和鱼类、藻类等海洋食品。然而,人体内从α-LNA转化为DHA的效率很低,并不能满足日常所需,尤其是对于孕妇、肝病或枫糖尿病患者[3,6,7]。另一方面,随着农业改革和食品工业的发展,人们日常摄入的脂肪已经从海洋油脂或α-LNA类油脂(如亚麻籽油)转变为ω-6类油脂(如大豆油、棕榈液油和玉米油)与饱和脂肪,从而使ω-3脂肪酸的摄入降低,进一步导致了母乳中DHA的含量的减少[8,9]。因此,现代食品加入了更多的鱼油、藻油和富含DHA的结构脂质(structured lipids, SL), 以便人们可以直接摄取DHA [10]。研究显示,摄入外源DHA的孕妇,其母乳中的DHA含量会比素食主义者母乳的DHA含量高好几倍 [11]。素食主义者母乳中的DHA主要来源于植物油脂中ω-3 FA在体内的转化。

根据油脂来源不同,DHA可分布在甘油三酯(TAG)分子上不同的位点(sn -1,2或3位)。人体摄入DHA后,sn -1,3位特异性胰脂酶会水解TAG,从而生成sn -2单甘酯(MAG)和游离脂肪酸(FFA)[12]sn -2MAG可在小肠黏膜上被很好地吸收,进而被用于重新合成TAG或磷脂(PL,脑细胞膜的重要组成部分)[13,14]。相比较而言,从sn -1和sn -3位水解下来的FFA则没有被针对性地吸收[15]。因此,DHA分布在sn -2位的TAG比DHA随机分布的TAG更有利于人体的吸收和利用[16]。类似地,sn -2 DHA MAG相比于DHA甘油二酯(DAG)和DHA乙酯也更容易被机体吸收[17,18]。然而,目前关于DHA膳食或保健品的指南基本局限于对DHA总量的推荐,很少涉及不同DHA位置分布的相关信息。

基于药理和营养角度,TAG和PL分子中DHA的位置分布会影响大脑的发育和功能维持,因此阐明常见油脂中DHA的分布以及富含sn -2 DHA脂质饮食的特点很有必要。本文同时介绍了富含sn -2 DHA SL的酶法合成技术以及相关的检测分析方法。

《2. 天然油脂和合成脂质中的 sn -2 DHA》

2. 天然油脂和合成脂质中的 sn -2 DHA

DHA主要来源于海洋鱼油和单细胞油脂[19]sn -2 DHA脂质主要以TAG、DAG、MAG的形式存在于鱼油和藻油中,也有以PL的形式存在于虾油和蛋黄脂质中(图1)。

《图1》

图1. sn -2 DHA脂质的主要分子结构。X:乙醇胺、胆碱、丝氨酸、肌醇等。

常见油脂中DHA的含量见表1。单细胞藻油(如Schizochytrium sp.油和Crypthecodinium cohnii 油)的DHA含量最高,为44.89%~48.20%, 其次为金枪鱼油、沙丁鱼油、凤尾鱼油和鲑鱼油等(9.76%~26.85%)。然而,在这些鱼油中,sn -2 DHA的含量要高于藻油中的sn -2 DHA的含量。在鱼油的TAG中,44.79%~72.99%的DHA分布在sn -2位上,而在藻油TAG中,31.66%~42.09%的DHA分布在sn -2位上。这可能与如上所述的sn -2 DHA脂质消化特性有关。鱼类以藻类为食,通过消化吸收藻油中的DHA脂质生成富含sn -2 DHA的MAG或DAG,进而重新合成TAG,从而提高了sn -2 DHA的占比[15]

《表1》

表1 食物和配方奶粉脂质中甘油骨架上DHA的位置分布

HMF: human milk fat; IFF: infant formula fat; ND: not detectable.

a Relative percentage of DHA at sn -2 position was calculated as [sn -2 DHA percentage / (DHA percentage in TAG × 3)] × 100 [30], or reported by the literature.

b The data was shown as mol%.

c HMF collected after birth at Days 1–5 was colostrum, at Days 6–15 was transitional, and at more than 15 days was mature.

蛋黄和虾油中的脂质一般以PL形式存在(图1),这与常见的鱼油和藻油中的脂质不同。不同的脂质存在形式会影响大脑对DHA的吸收。含有虾油的饮食可以增加大鼠大脑中DHA PL的含量,而PL正是大脑细胞膜的主要组成部分[32]

在人乳脂(HMF)中也含有少量DHA,约占总FA的0.36%~0.70%, 其 中52.63%~65.15%的DHA分布在sn -2位上(表1)。然而,DHA的含量从初乳至成熟乳逐渐减少(0.56%~0.70%→0.36%~0.44%),但在sn -2位上的相对含量却从52.63%~55.71%增至61.39%~65.15%。此外,在分娩双胞胎或连续分娩的母亲的母乳中,DHA的含量逐渐降低[33,34]。临床研究显示,补充了α-LNA但没有补充DHA的婴儿在出生后的前6个月无法维持其大脑中正常的DHA浓度[35]。在新生儿体内,α-LNA转换为DHA的效率同样很低。相比于HMF,许多市售婴幼儿配方奶粉脂肪(IFF)中的DHA和sn -2 DHA(相对含量为27.56%~48.17%)水平均较低(表1)。在11款西班牙产的IFF中,只有一款IFF在sn -2位上含有DHA。一般而言,为维持神经系统的正常发育,婴儿需从母乳中日均摄取70~80 mg的DHA [34]。因此,为保护婴儿免受神经系统发育的缺陷,产妇的饮食中通常需要补充外源DHA,尤其是sn -2 DHA脂质[4]

《3.  sn -2 DHA 对大脑的有益功能》

3.  sn -2 DHA 对大脑的有益功能

《3.1. 吸收 sn -2 DHA 脂质增加大脑中 DHA 的积累》

3.1. 吸收 sn -2 DHA 脂质增加大脑中 DHA 的积累

脂质约占脑组织干基重量的60% [34]。尽管DHA是维持大脑和神经功能正常的关键物质,但其被机体吸收和利用的程度显著受到其在甘油骨架上的位置分布的影响。相比于sn -1,2,3位上随机分布的DHA,分布在sn -2 位上的DHA更容易被肠黏膜所吸收[16]。食用富含sn -2 DHA饮食的新生大鼠,其大脑PL [如磷脂酰丝氨酸和磷脂酰胆碱(PC)]中的DHA含量显著高于对照组食用牛奶饮食大鼠的大脑PL中的DHA水平(表2)[36]。类似的研究发现,相比于未酯化的DHA,大鼠大脑可以优先利用sn -2溶血磷脂酰胆碱DHA(表2)[37]。此外,已有大规模试验表明,在孕期通过食用较多海洋油脂补充DHA是安全的[38]

《表2》

表2 大脑对sn -2 DHA脂质的吸收

《3.2. DHA 通过肠 - 脑轴增强脑功能》

3.2. DHA 通过肠 - 脑轴增强脑功能

情绪障碍是大脑功能缺陷的症状之一,目前认为该症状与肠道菌群的改变关系密切[39]。近年来,人们对大脑问题(如脑损伤、认知能力下降、精神分裂症、中风、焦虑症、压力和抑郁症)和肠道菌群之间的相关性颇感兴趣。人体肠道内生活着1000多种微生物菌群,共计约100万亿个微生物[40]。不同的菌群会改变大脑的功能,反之中枢神经系统也可能间接影响肠道微生物的组成。这一系列综合性的双向信号传导途径被定义为肠-脑轴或脑-肠-菌群轴,主要涉及迷走神经和脑脊髓传导通路(图2)[41,42]。

《图2》

图2. 肠-脑轴:大脑和肠道菌群之间可能存在的多条双向信息通路[41,42]。

前期研究认为,肠道微生物在开发复杂脑功能障碍的疗法中起着重要作用。一般而言,含有DHA的饮食干预会通过改变肠道微生物的组成而对行为和神经生理障碍产生有益的影响[43,44],见表3。

《表3》

表3 肠黏膜吸收的DHA通过肠-脑轴提高大脑功能

EPA: eicosapentaenoic acid; ARA: arachidonic acid.

从表3可知,在大鼠试验中,补充DHA可重新构建大鼠的肠道菌群并使之正常化,主要表现为有益微生物(如乳酸杆菌、双歧杆菌和拟杆菌)丰度的增加,同时变形杆菌(微小未裂杆菌)和蓝细菌等的丰度减少,从而有助于缓解早期应激、社交孤立或衰老等大脑功能的相关障碍。此外,García-Ródenas等[49]认为,摄取富含DHA的饮食,可以使肠道的通透性正常化,进而减轻心理压力,但该路径未表明需要重新构建肠道菌群。这种差异表明,肠-脑轴机制包含多种双向信息通道,其中一些通道尚未被完全探明,因此需要更多的研究来解释DHA饮食作用于肠道微生物并影响大脑功能的潜在机制。另外,DHA位置分布差异化的饮食(如富含sn -2 DHA脂质饮食和DHA随机分布脂质饮食)对肠-脑轴的影响也有待进一步研究。

《4. 酶法合成富含 sn -2 DHA 的油脂》

4. 酶法合成富含 sn -2 DHA 的油脂

许多婴儿、孕妇和哺乳期妇女仅食用DHA前体物质或含有有限DHA的食物[11]。目前DHA摄入量减少主要与西式饮食的流行密切相关[50]。因此,开发低污染和高效的油脂改性技术势在必行,如以饱和脂肪与表1中富含DHA的油脂为原料,通过酶法合成富含sn -2 DHA的改性油脂。这些技术主要包括酸解、酯交换、醇解及其组合反应。

《4.1. 酸解反应》

4.1. 酸解反应

许多制备sn -2 DHA SL的方法是将单细胞油脂[如来自Crypthecodinium cohnii(DHASCO)的DHA单细胞藻油]和FA(如辛酸)混合,进行一步酸解反应。其中,所使用的酶主要是sn -1,3位特异性脂肪酶或对DHA具有高活性的酶。

根据表4所列举的酸解反应,最优条件的料液比为1:3~1:18(油:FFA)、反应温度为30~55 ℃、载酶量为4%~15%、时间一般为几十个小时[51–54]。sn -2 DHA的含量受脂肪酶种类的显著影响[62]。在一些研究中,脂肪酶,如Pseudomonas sp. KWI-56对甘油的三个结合位点无特异性,但对DHA和二十二碳五烯酸却具有较高活性,因此该脂肪酶可以解离sn-2位上的DHA,从而在一定程度上导致酰基转移[52]。这种副反应在辛酸和不同脂肪酶存在时尤其容易发生[63]。开发更好的脂肪酶是尽可能减少酰基转移发生最好的方法。此外,从反应产物中提纯目标SL一直以来都较为复杂。对于小规模反应,反应产物中的FFA可以通过碱液中和被去除,TAG则可通过正己烷萃取获得,然后通过进一步蒸发溶剂就可以获得最终产物SL。

《表4》

表4 富含sn -2 DHA SL的酶法合成

DPA: docosapentaenoic acid; C: caprylic acid.

a Relative percentage of DHA at the sn -2 position was calculated as [sn-2 DHA percentage / (DHA percentage in TAG × 3)] × 100 [30].

另外一条典型的制备sn -2 DHA SL的技术路径是,首先水解单细胞油脂或海洋鱼油,以获得DHA,然后再将DHA酯化成TAG(表4)。在这条技术路径中,首先在添加有抗氧化剂(如丁基化羟基甲苯)的体系中,通过氢氧化钾皂化和盐酸酸化海洋油脂获得DHA,随后DHA与其他油脂酯化成目标SL,具体反应条件是料液比为1:5~1:18(油:DHA)、载酶量为10%、反应温度为60~65 ℃、反应时间为24 h [25,31,55]。对于大规模试验或工业生产,多余的FFA可通过短程蒸馏法除去。

《4.2. 酯交换反应》

4.2. 酯交换反应

将富含DHA的油脂或DHA乙酯与FA乙酯进行酯交换是制备SL的另一条技术路径(表4)。由于这类反应涉及反应位置的特异性和DHA的空间位阻,因此对酶的种类的筛选比较严格[52]。例如,在两步法反应中,将DHA乙酯和三辛酸甘油三酯以Alcaligenes sp.脂肪酶作为催化剂进行非选择性反应(50 ℃,90 h)来制取DHA随机分布的油脂,随后利用Novozym 435脂肪酶作为催化剂进行sn-1,3位特异性酯交换(40 ℃,40 h),制得sn -1,3-二辛酸-2-DHA甘油三酯[56]。该反应在充氮体系中进行,多余的乙酯和三辛酸甘油三酯则通过分子蒸馏法去除。

《4.3. 从 sn -2 DHA MAG 到 sn -2 DHA 甘油三酯》

4.3. 从 sn -2 DHA MAG 到 sn -2 DHA 甘油三酯

另一条典型的制备富含sn -2 DHA油脂的技术路径是,首先从海洋油脂中制取sn -2 DHA MAG,随后在MAG的sn -1,3位上接上FA(图3和表4)。

《图3》

图3. 典型的sn -2 DHA SL制备路径。

由于DHA易氧化以及酶法催化过程中的酰基转移和成本等问题,从油脂中制备sn -2 DHA MAG是该技术路径的关键环节[64]。传统方法是在乙醇体系中采用Novozym 435脂肪酶进行反应,这种酶在乙醇中显示出sn -1,3位特异性[59,60]。最近有研究报道了一种高效的制备富含sn -2 ω-3多不饱和脂肪酸(PUFA)MAG的方法,这种方法以Candida antarctica 脂肪酶A作为催化剂,是一种较为经济的方法[65]。在一项同以Candida antarctica 脂肪酶A为催化剂的研究中,sn -2 DHA含量为20.88%的鳀鱼油在低温(35 ℃)下反应12 h时可被转换为sn-2 DHA含量为65.69%的MAG;与之类似,sn -2 DHA含量为3.24%的藻油在低温(35 ℃)下反应12 h时可被转换为sn -2 DHA含量为22.20%的MAG [66]。这项研究表明,Candida antarctica 脂肪酶A在乙醇体系中表现出无位置特异性且对ω-3 PUFA无偏好,因此该脂肪酶可较多地裂解非目标FA,从而将ω-3 PUFA(如DHA等)保留在甘油骨架上形成富含DHA的MAG [21,65,66]。

在纯化时,含有DHA的副产物,如FFA和乙酯等,可通过短程蒸馏法和分子蒸馏法回收,以备后续的重复利用[67]。这条技术路径的特点是具备较高的灵活性,并利用sn -2 DHA MAG作为中间体制造不同类型的油脂,如起酥油、人造黄油、涂抹脂、IFF、烘焙油脂和糖果油脂等。

《5.  sn -2 DHA 的分析技术》

5.  sn -2 DHA 的分析技术

TAG分子中FA的立体异构性分析主要是通过安装有火焰离子检测器的气相色谱技术开展。该方法首先利用sn -1,3位特异性脂肪酶将TAG水解为MAG,然后通过薄层层析法将sn -2 MAG分离出来,并将其甲酯化后进行检测器检测[68]。其中,常用的sn -1,3位特异性脂肪酶是胰脂酶。然而,有研究认为胰脂酶并不能充分水解TAG分子上所有的FA,尤其是海洋鱼油中的PUFA [57]。胰脂酶水解的程度取决于FA的种类和双键的位置[69]。相比较而言,Candida antarctica 脂肪酶B(Novozym 435或Lipozyme 435)则可以较好地水解PUFA [70,71]。尽管在很多情况下Lipozyme 435是一种非特异性脂肪酶,但在过量的乙醇体系中,它会表现出sn -1,3位特异性[70]。有研究分别利用Novozym 435和胰脂酶两种方法测定了鱼油中PUFA的组成,见表5。Novozym 435水解鱼油中PUFA的效率根据碳链长度与饱和度的不同而不同。例如,用胰脂酶法测得的二十碳五烯酸(EPA)含 量(7.5%~10.8%) 高于用Novozym 435法测得的EPA含量(6.8%~9.0%),而DHA的检测结果正好相反[71]。这说明Novozym 435相比于胰脂酶可以更好地水解DHA。

《表5》

表5 鱼油中sn -2 PUFA组成的测定(胰脂酶法和Novozym 435法)[71]

总体上,Novozym 435法需要严格的水解条件才能完全释放TAG的sn -1,3位上的FA,如醇油比、反应时间和温度等,否则,会因水解反应不充分而导致检测值低于C-13核磁共振( 13C NMR)的检测值或预测值。在一项鱼肝油试验中,由Novozym 435法得到的sn -2 DHA含量为69.4%,该值低于由 13C NMR法测得的sn -2 DHA含量(72.5%);而当研究对象为金枪鱼油时,两者的sn -2 DHA含量的检测结果接近,其中Novozym 435法测得的值为53.1%, 13C NMR法测得的值为52.0% [72]

《6. 结论》

6. 结论

海洋鱼油和藻油是典型的DHA来源油脂,其中约一半的DHA FA结合在sn -2位上。相比于分布在sn -1,3位上的DHA油脂,sn -2 DHA脂质这种独特的结构可促使DHA更易被肠黏膜所吸收,并被用于体内TAG或PL的重新合成。因此,sn -2 DHA脂质在大脑功能发育和缓解焦虑、压力、认知能力下降、精神分裂症和中风等脑部疾病方面起到积极的作用。研究肠-脑轴是了解DHA饮食对大脑功能有益影响的最有效策略。该机制认为,通过DHA饮食的干预可以重新构建或正常化肠道菌群,从而解决与大脑功能相关的问题。然而,肠-脑轴包含的诸多双向信息通道尚未被完全研究清楚。今后我们还需要进一步研究sn -2 DHA脂质补充对肠道微生物和大脑功能的影响。

人类在两岁以前,大脑中的DHA含量积累迅速。虽然HMF中DHA的含量在婴儿出生15天后已降至较低水平,但sn -2 DHA含量却呈增长趋势,这也说明sn -2 DHA在婴幼儿和儿童大脑发育中的重要性。因此,我们建议在日常饮食中摄入富含sn -2 DHA的SL。这类SL的制备可首先通过将富含DHA的油脂水解为sn -2 DHA MAG,再在sn -1,3位上结合所需的FA。在未来的研究中,我们应开发高sn -1,3位活性或对ω-3 PUFA没有偏好的脂肪酶,从而在温和的反应条件和纯化技术下提高合成的效率和经济性。

《致谢》

致谢

本文得到了国家留学基金管理委员会资助项目(201706790068)和江南大学食品科学与技术国家重点实验室自由探索资助课题(SKLF-ZZA-201705)的支持。美国乔治亚大学食品科学与技术系也对该工作提供了部分支持。

《Compliance with ethics guidelines》

Compliance with ethics guidelines

Jun Jin, Qingzhe Jin, Xingguo Wang, and Casimir C. Akoh declare that they have no conflict of interest or financial conflicts to disclose.

《Nomenclature》

Nomenclature

α-LNA: α-linolenic acid

ARA: arachidonic acid

DAG: diacylglycerol

DHA: docosahexaenoic acid

DPA: docosapentaenoic acid

EPA: eicosapentaenoic acid

FA: fatty acid

FFA: free fatty acid

HMF: human milk fat

IFF: infant formula fat

MAG: monoacylglycerol

NMR: nuclear magnetic resonance

PC: phosphatidylcholine

PUFA: polyunsaturated fatty acid

SL: structured lipid

TAG: triacylglycero