资源类型

期刊论文 753

年份

2024 1

2023 70

2022 70

2021 58

2020 44

2019 50

2018 37

2017 30

2016 38

2015 34

2014 28

2013 29

2012 20

2011 29

2010 27

2009 41

2008 27

2007 28

2006 17

2005 6

展开 ︾

关键词

三峡工程 5

优化设计 3

力学性能 3

耐久性 3

飞机结构 3

DSM(设计结构矩阵) 2

PP 2

三点弯曲梁 2

产业结构 2

关键技术 2

可持续发展 2

增材制造 2

复合材料 2

机械结构 2

横梁 2

疲劳寿命 2

组合梁 2

结构调整 2

能源结构 2

展开 ︾

检索范围:

排序: 展示方式:

Damage assessment of laminated composite beam structures using damage locating vector (DLV) method

T. VO-DUY,N. NGUYEN-MINH,H. DANG-TRUNG,A. TRAN-VIET,T. NGUYEN-THOI

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 457-465 doi: 10.1007/s11709-015-0303-0

摘要: In this paper, the damage locating vector (DLV) method using normalized cumulative energy ( ) is employed to locate multiple damage sites in laminated composite beam structures. Numerical simulations of two laminated composite beams are employed to investigate several damage scenarios in which the degradation of elements is modeled by the reduction in the longitudinal Young’s modulus and transverse Young’s modulus of beam layers. The results show that the DLV method gives good performance for this kind of structure.

关键词: normalized cumulative energy     structural health monitoring (SHM)     damage locating vector method (DLV)     laminated composite beam structure    

Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method

T. VO-DUY, V. HO-HUU, T. NGUYEN-THOI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 324-336 doi: 10.1007/s11709-018-0466-6

摘要: In the present study, the free vibration of laminated functionally graded carbon nanotube reinforced composite beams is analyzed. The laminated beam is made of perfectly bonded carbon nanotubes reinforced composite (CNTRC) layers. In each layer, single-walled carbon nanotubes are assumed to be uniformly distributed (UD) or functionally graded (FG) distributed along the thickness direction. Effective material properties of the two-phase composites, a mixture of carbon nanotubes (CNTs) and an isotropic polymer, are calculated using the extended rule of mixture. The first-order shear deformation theory is used to formulate a governing equation for predicting free vibration of laminated functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. The governing equation is solved by the finite element method with various boundary conditions. Several numerical tests are performed to investigate the influence of the CNTs volume fractions, CNTs distributions, CNTs orientation angles, boundary conditions, length-to-thickness ratios and the numbers of layers on the frequencies of the laminated FG-CNTRC beams. Moreover, a laminated composite beam combined by various distribution types of CNTs is also studied.

关键词: free vibration analysis     laminated FG-CNTRC beam     finite element method     first-order shear deformation theory     composite material    

Thermal buckling behavior of laminated composite plates: a finite-element study

Houdayfa OUNIS,Abdelouahab TATI,Adel BENCHABANE

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 41-49 doi: 10.1007/s11465-014-0284-z

摘要:

In this paper, the thermal buckling behavior of composite laminated plates under a uniform temperature distribution is studied. A finite element of four nodes and 32 degrees of freedom (DOF), previously developed for the bending and mechanical buckling of laminated composite plates, is extended to investigate the thermal buckling behavior of laminated composite plates. Based upon the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical implementation of the present finite element allowed the comparison of the numerical obtained results with results obtained from the literature: 1) with element of the same order, 2) the first order shear deformation theory, 3) the high order shear deformation theory and 4) the three-dimensional solution. It was found that the obtained results were very close to the reference results and the proposed element offers a good convergence speed. Furthermore, a parametrical study was also conducted to investigate the effect of the anisotropy of composite materials on the critical buckling temperature of laminated plates. The study showed that: 1) the critical buckling temperature generally decreases with the increasing of the modulus ratio EL/ET and thermal expansion ratio αT/αL, and 2) the boundary conditions and the orientation angles significantly affect the critical buckling temperature of laminated plates.

关键词: thermal buckling     laminated composite plates     anisotropy     critical buckling temperature     finite-element method     high precision rectangular Hermitian element    

Stochastic analysis of laminated composite plate considering stochastic homogenization problem

S. SAKATA,K. OKUDA,K. IKEDA

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 141-153 doi: 10.1007/s11709-014-0286-2

摘要: This paper discusses a multiscale stochastic analysis of a laminated composite plate consisting of unidirectional fiber reinforced composite laminae. In particular, influence of a microscopic random variation of the elastic properties of component materials on mechanical properties of the laminated plate is investigated. Laminated composites are widely used in civil engineering, and therefore multiscale stochastic analysis of laminated composites should be performed for reliability evaluation of a composite civil structure. This study deals with the stochastic response of a laminated composite plate against the microscopic random variation in addition to a random variation of fiber orientation in each lamina, and stochastic properties of the mechanical responses of the laminated plate is investigated. Halpin-Tsai formula and the homogenization theory-based finite element analysis are employed for estimation of effective elastic properties of lamina, and the classical laminate theory is employed for analysis of a laminated plate. The Monte-Carlo simulation and the first-order second moment method with sensitivity analysis are employed for the stochastic analysis. From the numerical results, importance of the multiscale stochastic analysis for reliability evaluation of a laminated composite structure and applicability of the sensitivity-based approach are discussed.

关键词: stochastic homogenization     multiscale stochastic analysis     microscopic random variation     laminated composite plate    

Application of consistent geometric decomposition theorem to dynamic finite element of 3D composite beam

Iman FATTAHI, Hamid Reza MIRDAMADI, Hamid ABDOLLAHI

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 675-689 doi: 10.1007/s11709-020-0625-4

摘要: Analyzing static and dynamic problems including composite structures has been of high significance in research efforts and industrial applications. In this article, equivalent single layer approach is utilized for dynamic finite element procedures of 3D composite beam as the building block of numerous composite structures. In this model, both displacement and strain fields are decomposed into cross-sectional and longitudinal components, called consistent geometric decomposition theorem. Then, the model is discretized using finite element procedures. Two local coordinate systems and a global one are defined to decouple mechanical degrees of freedom. Furthermore, from the viewpoint of consistent geometric decomposition theorem, the transformation and element mass matrices for those systems are introduced here for the first time. The same decomposition idea can be used for developing element stiffness matrix. Finally, comprehensive validations are conducted for the theory against experimental and numerical results in two case studies and for various conditions.

关键词: composite beam     dynamic finite element     degrees of freedom coupling     experimental validation     numerical validation    

Optimization of the mechanical performance and damage failure characteristics of laminated composites

《结构与土木工程前沿(英文)》   页码 1357-1369 doi: 10.1007/s11709-023-0996-4

摘要: In this study, the effect of fiber angle on the tensile load-bearing performance and damage failure characteristics of glass composite laminates was investigated experimentally, analytically, and numerically. The glass fabric in the laminate was perfectly aligned along the load direction (i.e., at 0°), offset at angles of 30° and 45°, or mixed in different directions (i.e., 0°/30° or 0°/45°). The composite laminates were fabricated using vacuum-assisted resin molding. The influence of fiber orientation angle on the mechanical properties and stiffness degradation of the laminates was studied via cyclic tensile strength tests. Furthermore, simulations have been conducted using finite element analysis and analytical approaches to evaluate the influence of fiber orientation on the mechanical performance of glass laminates. Experimental testing revealed that, although the composite laminates laid along the 0° direction exhibited the highest stiffness and strength, their structural performance deteriorated rapidly. We also determined that increasing the fiber offset angle (i.e., 30°) could optimize the mechanical properties and damage failure characteristics of glass laminates. The results of the numerical and analytical approaches demonstrated their ability to capture the mechanical behavior and damage failure modes of composite laminates with different fiber orientations, which may be used to prevent the catastrophic failures that occur in composite laminates.

关键词: fiber orientation     composite laminates     stiffness degradation     analytical approaches     finite element analysis    

Finite element analysis of stress concentrations and failure criteria in composite plates with circular

null

《机械工程前沿(英文)》 2014年 第9卷 第3期   页码 281-294 doi: 10.1007/s11465-014-0307-9

摘要:

In this study, the stress concentration factors (SCF) in cross-and-angle-ply laminated composite plates as well as in isotropic plates with single circular holes subjected to uniaxial loading is studied. A quadrilateral finite element of four-node with 32 degrees of freedom at each node, previously developed for the bending and mechanical buckling of laminated composite plates, is used to evaluate the stress distribution in laminated composite plates with central circular holes. Based up on the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical results obtained by the present element compare favorably with those obtained by the analytic approaches published in literature. It is observed that the obtained results are very close to the reference results, which demonstrates the accuracy of the present element. Additionally, to determine the first ply failure (FPF) of laminated plate, several failure criterions are employed. Finally, to show the effect of ratio on the failure of plates, a number of figures are given for different fiber orientation angles.

关键词: laminated composite plates     stress concentration     geometric singularity     anisotropic effect    

Dynamic analysis of composite beam subjected to harmonic moving load based on the third-order shear deformation

Mohammad Javad REZVANIL, Mohammad Hossein KARGARNOVIN, Davood YOUNESIAN

《机械工程前沿(英文)》 2011年 第6卷 第4期   页码 409-418 doi: 10.1007/s11465-011-0245-8

摘要:

The response of an infinite Timoshenko beam subjected to a harmonic moving load based on the third-order shear deformation theory (TSDT) is studied. The beam is made of laminated composite, and located on a Pasternak viscoelastic foundation. By using the principle of total minimum potential energy, the governing partial differential equations of motion are obtained. The solution is directed to compute the deflection and bending moment distribution along the length of the beam. Also, the effects of two types of composite materials, stiffness and shear layer viscosity coefficients of foundation, velocity and frequency of the moving load over the beam response are studied. In order to demonstrate the accuracy of the present method, the results TSDT are compared with the previously obtained results based on first-order shear deformation theory, with which good agreements are observed.

关键词: timoshenko composite beam     pasternak viscoelastic foundation     third-order shear deformation theory (TSDT)     harmonic moving load    

Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concrete compositebeam

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 704-721 doi: 10.1007/s11709-023-0941-6

摘要: In this study, the flexural and longitudinal shear performances of two types of precast lightweight steel–ultra-high performance concrete (UHPC) composite beams are investigated, where a cluster UHPC slab (CUS) and a normal UHPC slab (NUS) are connected to a steel beam using headed studs through discontinuous shear pockets and full-length shear pockets, respectively. Results show that the longitudinal shear force of the CUS is greater than that of the NUS, whereas the interfacial slip of the former is smaller. Owing to its better integrity, the CUS exhibits greater flexural stiffness and a higher ultimate bearing capacity than the NUS. To further optimize the design parameters of the CUS, a parametric study is conducted to investigate their effects on the flexural and longitudinal shear performances. The square shear pocket is shown to be more applicable for the CUS, as the optimal spacing between two shear pockets is 650 mm. Moreover, a design method for transverse reinforcement is proposed; the transverse reinforcement is used to withstand the splitting force caused by studs in the shear pocket and prevent the UHPC slab from cracking. According to calculation results, the transverse reinforcement can be canceled when the compressive strength of UHPC is 150 MPa and the volume fraction of steel fiber exceeds 2.0%.

关键词: precast steel–UHPC composite beam     flexural performance     longitudinal shear performance     parametric study     transverse reinforcement ratio    

Simulation of steel beam under ceiling jet based on a wind–fire–structure coupling model

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 78-98 doi: 10.1007/s11709-022-0936-8

摘要: For localized fires, it is necessary to consider the thermal and mechanical responses of building elements subject to uneven heating under the influence of wind. In this paper, the thermomechanical phenomena experienced by a ceiling jet and I-beam in a structural fire were simulated. Instead of applying the concept of adiabatic surface temperature (AST) to achieve fluid–structure coupling, this paper proposes a new computational fluid dynamics–finite element method numerical simulation that combines wind, fire, thermal, and structural analyses. First, to analyze the velocity and temperature distributions, the results of the numerical model and experiment were compared in windless conditions, showing good agreement. Vortices were found in the local area formed by the upper and lower flanges of the I-beam and the web, generating a local high-temperature zone and enhancing the heat transfer of convection. In an incoming-flow scenario, the flame was blown askew significantly; the wall temperature was bimodally distributed in the axial direction. The first temperature peak was mainly caused by radiative heat transfer, while the second resulted from convective heat transfer. In terms of mechanical response, the yield strength degradation in the highest-temperature region in windless conditions was found to be significant, thus explaining the stress distribution of steel beams in the fire field. The mechanical response of the overall elements considering the incoming flows was essentially elastic.

关键词: CFD–FEM coupling     steel beam     wind     ceiling jet     numerical heat transfer    

A Stoneley wave method to detect interlaminar damage of metal layer composite pipe

Bing LI,Lei QIANG,Tong LU,Xu GENG,Minghang LI

《机械工程前沿(英文)》 2015年 第10卷 第1期   页码 89-94 doi: 10.1007/s11465-015-0323-4

摘要:

The interlaminar defect is a major form of damage in metal layer composite pipes which are widely used in petroleum and chemical industry. In this paper, a Stoneley wave method is presented to detect interlaminar damage in laminated pipe structure. Stoneley wave possesses some good characteristics, such as high energy and large displacement at the interface and non-dispersive in the high-frequency, so the sensitivity of detecting interlaminar damage can be improved and the higher frequency can be used in damage detection compared with Lamb waves. Additionally, as the frequency increases, the wavelength of the Stoneley wave reduces. Thus, its ability to detect small defects at the interface is enhanced. Finite element model of metal layer composite pipe with interlaminar damage is used to simulate wave propagation of Lamb waves and Stoneley wave, respectively. The damage location is calculated by using the Stoneley wave signal obtained from finite element model, and then the results are compared with the actual damage locations. The simulation examples demonstrate that the Stoneley wave method can better identify the interlaminar damage in laminated pipe structure compared with Lamb waves.

关键词: Stoneley wave     interlaminar damage     metal laminated pipe    

Experimental and statistical investigation of a new concrete-composite beam with encased polymer tube

Abdelmadjid SI SALEM,Souad AIT TALEB,Kamal AIT TAHAR

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 154-162 doi: 10.1007/s11709-015-0296-8

摘要: A new concrete-composite beam with high mechanical performances to weight ratio is developed in this study. The proposed design technique consists to embed a cylindrical polymer tube wrapped by a GFRP Jacket in the mechanically ineffective concrete tensile zone. An experimental investigation is carried out on composite beams under bending loads until failure to evaluate the flexural capacity and the corresponding failure mechanisms. Based on the experimental results, statistical and preliminary reliability analyses using the FORM method are performed to assess the safety margin of the new beam. The confrontation between test and simulation results shows a satisfactory agreement, and represents a promising revelation regarding the improvement in terms of strength and ductility of such design compared to conventional reinforced concrete beams with traditional one.

关键词: design     GFRP-Jacket     polymer tube     test     reliability analysis    

Bicontinuous porous membranes with micro-nano composite structure using a facile atomization-assisted

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1268-1280 doi: 10.1007/s11705-022-2143-5

摘要: The micro-nano composite structure can endow separation membranes with special surface properties, but it often has the problems of inefficient preparation process and poor structural stability. In this work, a novel atomization-assisted nonsolvent induced phase separation method, which is also highly efficient and very simple, has been developed. By using this method, a bicontinuous porous microfiltration membrane with robust micro-nano composite structure was obtained via commercially available polymers of polyacrylonitrile and polyvinylpyrrolidone. The formation mechanism of the micro-nano composite structure was proposed. The microphase separation of polyacrylonitrile and polyvinylpyrrolidone components during the atomization pretreatment process and the hydrogen bonding between polyacrylonitrile and polyvinylpyrrolidone molecules should have resulted in the nano-protrusions on the membrane skeleton. The membrane exhibits superhydrophilicity in air and superoleophobicity underwater. The membrane can separate both surfactant-free and surfactant-stabilized oil-in-water emulsions with high separation efficiency and permeation flux. With excellent antifouling property and robust microstructure, the membrane can easily be recycled for long-term separation. Furthermore, the scale-up verification from laboratory preparation to continuous production has been achieved. The simple, efficient, cost-effective preparation method and excellent membrane properties indicate the great potential of the developed membranes in practical applications.

关键词: atomization     nonsolvent induced phase separation     bicontinuous porous structure     micro-nano composite structure     oil-water separation    

Experimental study on flexural behavior of ECC/RC composite beams with U-shaped ECC permanent formwork

Zhi QIAO, Zuanfeng PAN, Weichen XUE, Shaoping MENG

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1271-1287 doi: 10.1007/s11709-019-0556-0

摘要: To enhance the durability of a reinforced concrete structure, engineered cementitious composite (ECC), which exhibits high tensile ductility and good crack control ability, is considered a promising alternative to conventional concrete. However, broad application of ECC is hindered by its high cost. This paper presents a new means to address this issue by introducing a composite beam with a U-shaped ECC permanent formwork and infill concrete. The flexural performance of the ECC/RC composite beam has been investigated experimentally with eight specimens. According to the test results, the failure of a composite beam with a U-shaped ECC formwork is initiated by the crushing of compressive concrete rather than debonding, even if the surface between the ECC and the concrete is smooth as-finished. Under the same reinforcement configurations, ECC/RC composite beams exhibit increases in flexural performance in terms of ductility, load-carrying capacity, and damage tolerance compared with the counterpart ordinary RC beam. Furthermore, a theoretical model based on the strip method is proposed to predict the moment-curvature responses of ECC/RC composite beams, and a simplified method based on the equivalent rectangular stress distribution approach has also evolved. The theoretical results are found to be in good agreement with the test data.

关键词: engineered cementitious composite (ECC)     durability     ECC/RC composite beam     permanent formwork     flexural performance     theoretical method    

Damage detection in beam-like structures using static shear energy redistribution

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1552-1564 doi: 10.1007/s11709-022-0903-4

摘要: In this study, a static shear energy algorithm is presented for the damage assessment of beam-like structures. According to the energy release principle, the strain energy of a damaged element suddenly changes when structural damage occurs. Therefore, the change in the static shear energy is employed to determine the damage locations in beam-like structures. The static shear energy is derived from the spectral factorization of the elementary stiffness matrix and structural deflection variation. The advantage of using shear energy as opposed to total energy is that only a few deflection data points of the beam structure are required during the process of damage identification. Another advantage of the proposed approach is that damage detection can be performed without establishing a structural finite-element model in advance. The proposed technique is first validated using a numerical example with single, multiple, and adjacent damage scenarios. A channel steel beam and rectangular concrete beam are employed as experimental cases to further verify the proposed approach. The results of the simulation and experiment examples indicate that the proposed algorithm provides a simple and effective method for defect localization in beam-like structures.

关键词: damage detection     beam structure     strain energy     static displacement variation     energy damage index    

标题 作者 时间 类型 操作

Damage assessment of laminated composite beam structures using damage locating vector (DLV) method

T. VO-DUY,N. NGUYEN-MINH,H. DANG-TRUNG,A. TRAN-VIET,T. NGUYEN-THOI

期刊论文

Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method

T. VO-DUY, V. HO-HUU, T. NGUYEN-THOI

期刊论文

Thermal buckling behavior of laminated composite plates: a finite-element study

Houdayfa OUNIS,Abdelouahab TATI,Adel BENCHABANE

期刊论文

Stochastic analysis of laminated composite plate considering stochastic homogenization problem

S. SAKATA,K. OKUDA,K. IKEDA

期刊论文

Application of consistent geometric decomposition theorem to dynamic finite element of 3D composite beam

Iman FATTAHI, Hamid Reza MIRDAMADI, Hamid ABDOLLAHI

期刊论文

Optimization of the mechanical performance and damage failure characteristics of laminated composites

期刊论文

Finite element analysis of stress concentrations and failure criteria in composite plates with circular

null

期刊论文

Dynamic analysis of composite beam subjected to harmonic moving load based on the third-order shear deformation

Mohammad Javad REZVANIL, Mohammad Hossein KARGARNOVIN, Davood YOUNESIAN

期刊论文

Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concrete compositebeam

期刊论文

Simulation of steel beam under ceiling jet based on a wind–fire–structure coupling model

期刊论文

A Stoneley wave method to detect interlaminar damage of metal layer composite pipe

Bing LI,Lei QIANG,Tong LU,Xu GENG,Minghang LI

期刊论文

Experimental and statistical investigation of a new concrete-composite beam with encased polymer tube

Abdelmadjid SI SALEM,Souad AIT TALEB,Kamal AIT TAHAR

期刊论文

Bicontinuous porous membranes with micro-nano composite structure using a facile atomization-assisted

期刊论文

Experimental study on flexural behavior of ECC/RC composite beams with U-shaped ECC permanent formwork

Zhi QIAO, Zuanfeng PAN, Weichen XUE, Shaoping MENG

期刊论文

Damage detection in beam-like structures using static shear energy redistribution

期刊论文