资源类型

期刊论文 14

年份

2023 1

2021 1

2019 2

2018 2

2016 3

2015 1

2014 1

2013 1

2009 1

2007 1

展开 ︾

关键词

展开 ︾

检索范围:

排序: 展示方式:

Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms

In-Sun Kang, Jinying Xi, Hong-Ying Hu

《环境科学与工程前沿(英文)》 2018年 第12卷 第3期 doi: 10.1007/s11783-018-1032-0

摘要: Photodegradation by ultraviolet irradiation (UV) is increasingly applied in volatile organic compound (VOC) and odor gas treatments. In this study, 27 typical VOCs, including 11 hydrocarbons and 16 hydrocarbon derivatives, at 150–200 ppm in air and nitrogen gas were treated by a laboratory-scale UV reactor with 185/254 nm irradiation to systematically investigate their removal and conversion by UV irradiation. For the tested 27 VOCs, the VOC removal efficiencies in air were within the range of 13%–97% (with an average of 80%) at a retention time of 53 s, which showed a moderate positive correlation with the molecular weight of the VOCs ( = 0.53). The respective contributions of photolysis and photooxidation to VOC removal were identified for each VOC. According to the CO results, the mineralization rate of the tested VOCs was within the range of 9%–90%, with an average of 41% and were negatively correlated to the molecular weight ( = 0.63). Many of the tested VOCs exhibited high concentration particulate matters in the off-gases with a 3–283 mg/m PM range and a 2–40 mg/m PM range. The carbon balance of each VOC during UV irradiation was analyzed based on the VOC, CO and PM concentrations. Certain organic intermediates and 23–218 ppm ozone were also identified in the off-gases. Although the UV technique exhibited a high VOC removal efficiency, its drawbacks, specifically low mineralization, particulate matters production, and ozone emission, must be considered prior to its application in VOC gas treatments.

关键词: VOCs     UV photodegradation     Particulate matters     Ozone    

Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China

Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 73-84 doi: 10.1007/s11783-014-0743-0

摘要: Volatile organic compounds (VOCs) and carbonyl compounds were measured both indoors and outdoors in 50 residences of Beijing in heating (December, 2011) and non-heating seasons (April/May, 2012). SUMMA canisters for VOCs and diffusive samplers for carbonyl compounds were deployed for 24 h at each site, and 94 compounds were quantified. Formaldehyde, acetone and acetaldehyde were the most abundant carbonyl compounds both indoors and outdoors with indoor median concentrations being 32.1, 21.7 and 15.3 μg·m , respectively. Ethane (17.6 μg·m ), toluene (14.4 μg·m ), propane (11.2 μg·m ), ethene (8.40 μg·m ), n-butane (6.87 μg·m ), and benzene (5.95 μg·m ) showed the high median concentrations in indoor air. Dichloromethane, p-dichlorobenzene (p-DCB) and toluene exhibited extremely high levels in some residences, which were related with a number of indoor emission sources. Moreover, isoprene, p-dichlorobenzene and carbonyls showed median indoor/outdoor (I/O) ratios larger than 3, indicating their indoor sources were prevailing. Chlorinated compounds like CFCs were mainly from outdoor sources for their I/O ratios being less than 1. In addition, indoor concentrations between two sampling seasons varied with different compounds. Carbonyl compounds and some chlorinated compounds had higher concentrations in the non-heating season, while alkanes, alkenes, aromatic compounds showed an increase in the heating season. Indoor concentration of VOCs and carbonyls were influenced by locations, interior decorations and indoor activities, however the specific sources for indoor VOCs and carbonyls could not be easily identified. The findings obtained in this study would significantly enhance our understandings on the prevalent and abundant species of VOCs as well as their concentrations and sources in Beijing residences.

关键词: indoor air     Volatile organic compounds (VOCs)     residence     carbonyl compounds    

Removal of multicomponent VOCs in off-gases from an oil refining wastewater treatment plant by a compost-based

Dan WU, Chunyan ZHANG, Li HAO, Changjun GENG, Xie QUAN,

《环境科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 483-491 doi: 10.1007/s11783-009-0144-y

摘要: Waste gases from oil refining wastewater treatment plants are often characterized by the presence of multicomponent and various concentrations of compounds. An evaluation of the performance and feasibility of removing multicomponent volatile organic compounds (VOCs) in off-gases from oil refining wastewater treatment plants was conducted in a pilot-scale compost-based biofilter system. This system consists of two identical biofilters packed with compost and polyethylene (PE). This paper investigates the effects of various concentrations of nonmethane hydrocarbon (NMHC) and empty bed residence time (EBRT) on the removal efficiency of NMHC. Based on the experimental results and practical applications, an EBRT of 66 s was applied to the biofilter system. The removal efficiencies of NMHC were within the range of 47%―100%. At an EBRT of 66 s, the average removal efficiency of benzene, toluene, and xylene were more than 99%, 99%, and 100%, respectively. The results demonstrated that multicomponent VOCs in off-gases from the oil refining wastewater treatment plant could be successfully removed in the biofilter system, which may provide useful information concerning the design criteria and operation of full-scale biofilters.

关键词: biodegradation     volatile organic compounds (VOCs)     biofiltration     biofilter    

Target the neglected VOCs emission from iron and steel industry in China for air quality improvement

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1695-z

摘要:

● Haze formation in China is highly correlated with iron and steel industry.

关键词: Volatile organic compounds     Iron and steel industry     Air quality     Sinter flue gas emission    

Removal of odors and VOCs in municipal solid waste comprehensive treatment plants using a novel three-stage

《环境科学与工程前沿(英文)》 2021年 第15卷 第3期 doi: 10.1007/s11783-021-1421-7

摘要:

A novel three-stage integrated biofilter (TSIBF) composed of acidophilic bacteria reaction segment (ABRS), fungal reaction segment (FRS) and heterotrophic bacteria reaction segment (HBRS) was constructed for the treatment of odors and volatile organic compounds (VOCs)from municipal solid waste (MSW) comprehensive treatment plants. The performance, counts of predominant microorganisms, and bioaerosol emissions of a full-scale TSIBF system were studied. High and stable removal efficiencies of hydrogen sulfide, ammonia and VOCs could be achieved with the TSIBF system, and the emissions of culturable heterotrophic bacteria, fungi and acidophilic sulfur bacteria were relatively low.

关键词: Biofiltration     Multi-stage biofilter     Volatile organic compounds     Waste gas treatment     Bioaerosol emissions    

Chemical speciation and anthropogenic sources of ambient volatile organic compounds (VOCs) during summer

LU Sihua, LIU Ying, SHAO Min, HUANG Shan

《环境科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 147-152 doi: 10.1007/s11783-007-0026-0

摘要: Volatile organic compounds (VOCs) were measured at six sites in Beijing in August, 2004. Up to 148 VOC species, including C to C alkanes, C to C alkenes, C to C aromatics, and halogenated hydrocarbons, were quantified. Although the concentrations differed at the sites, the chemical compositions were similar, except for the Tongzhou site where aromatics were significantly high in the air. Based on the source profiles measured from previous studies, the source apportionment of ambient VOCs was preformed by deploying the chemical mass balance (CMB) model. The results show that urban VOCs are predominant from mobile source emissions, which contribute more than 50% of the VOCs (in mass concentrations) to ambient air at most sites. Other important sources are gasoline evaporation, painting, and solvents. The exception is at the Tongzhou site where vehicle exhaust, painting, and solvents have about equal contribution, around 35% of the ambient VOC concentration. As the receptor model is not valid for deriving the sources of reactive species, such as isoprene and 1,3-butadiene, other methodologies need to be further explored.

关键词: Beijing     exception     gasoline evaporation     August     exhaust    

Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation

He NIU,Ziwei MO,Min SHAO,Sihua LU,Shaodong XIE

《环境科学与工程前沿(英文)》 2016年 第10卷 第5期 doi: 10.1007/s11783-016-0828-z

摘要: We develop a multi-effect evaluation method to assess integrated impact of VOCs. Enable policy-makers to identify important emission sources, regions, and key species. Solvent usage and industrial process are the most important anthropogenic sources. Styrene, toluene, ethylene, benzene, and m/p-xylene are key species to be cut. Volatile organic compounds (VOCs) play important roles in the atmosphere via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Few studies have integrated these effects to prioritize control measures for VOCs sources. In this study, we developed a multi-effects evaluation methodology based on updated emission inventories and source profiles, by combining the ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were estimated, the contribution and sharing of source to each of these adverse effects were calculated. Weightings were given to the three adverse effects by expert scoring, and then the integrated effect was determined. Taking 2012 as the base year, solvent use and industrial process were found to be the most important anthropogenic sources, accounting for 24.2% and 23.1% of the integrated effect, respectively, followed by biomass burning, transportation, and fossil fuel combustion, each had a similar contribution ranging from 16.7% to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiber products, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five provinces contributing the largest integrated effects. For the VOC species from emissions showed the largest contributions were styrene, toluene, ethylene, benzene, and m/p-xylene.

关键词: Ozone formation     Secondary organic aerosol     Multi-effects evaluation     VOC abatement strategy    

A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds

Wenjing Lu, Yawar Abbas, Muhammad Farooq Mustafa, Chao Pan, Hongtao Wang

《环境科学与工程前沿(英文)》 2019年 第13卷 第2期 doi: 10.1007/s11783-019-1108-5

摘要:

• Applications of non-thermal plasma reactors for reduction of VOCs were reviewed.

• Dielectric barrier discharge (DBD) plasma was considered.

• Effect of process parameters was studied.

• Effect of catalysts and inhibitors were evaluated.

关键词: Non-thermal plasma (NTP)     Dielectric barrier discharge (DBD)     Volatile organic compounds (VOCs)     Abatement     Input power    

The abatement of major pollutants in air and water by environmental catalysis

Junhua LI, Hong HE, Chun HU, Jincai ZHAO

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 302-325 doi: 10.1007/s11783-013-0511-6

摘要: This review reports the research progress in the abatement of major pollutants in air and water by environmental catalysis. For air pollution control, the selective catalytic reduction of NO (SCR) by ammonia and hydrocarbons on metal oxide and zeolite catalysts are reviewed and discussed, as is the removal of Hg from flue gas by catalysis. The oxidation of Volatile organic compounds (VOCs) by photo- and thermal- catalysis for indoor air quality improvement is reviewed. For wastewater treatment, the catalytic elimination of inorganic and organic pollutants in wastewater is presented. In addition, the mechanism for the procedure of abatement of air and water pollutants by catalysis is discussed in this review. Finally, a research orientation on environment catalysis for the treatment of air pollutants and wastewater is proposed.

关键词: air pollution control     wastewater treatment     DeNOx     selective catalytic reduction (SCR)     Volatile organic compounds (VOCs)     environmental catalysis    

A biofilter model for simultaneous simulation of toluene removal and bed pressure drop under varied inlet loadings

Jinying XI,Insun KANG,Hongying HU,Xian ZHANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 554-562 doi: 10.1007/s11783-014-0671-z

摘要: In this study, a biofiltration model including the effect of biomass accumulation and inert biomass growth is developed to simultaneously predict the Volatile Organic Compounds (VOCs) removal and filter bed pressure drop under varied inlet loadings. A laboratory-scale experimental biofilter for gaseous toluene removal was set up and operated for 100 days with inlet toluene concentration ranging from 250 to 2500 mg?m . According to sensitivity analysis based on the model, the VOCs removal efficiency of the biofilter is more sensitive to Henry’s constant, the specific surface area of the filter bed and the thickness of water layer, while the filter bed pressure drop is more sensitive to biomass yield coefficient and original void fraction. The calculated toluene removal efficiency and bed pressure drop satisfactorily fit the experimental data under varied inlet toluene loadings, which indicates the model in this study can be used to predict VOCs removal and bed pressure drop simultaneously. Based on the model, the effect of mass-transfer parameters on VOCs removal and the stable-run time of a biofilter are analyzed. The results demonstrate that the model can function as a good tool to evaluate the effect of biomass accumulation and optimize the design and operation of biofilters.

关键词: Volatile Organic Compounds (VOCs)     biofilters     modelling     biomass accumulation     pressure drop    

Enhanced performances in catalytic oxidation of

Nanli QIAO,Xin ZHANG,Chi HE,Yang LI,Zhongshen ZHANG,Jie CHENG,Zhengping HAO

《环境科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 458-466 doi: 10.1007/s11783-015-0802-1

摘要: A series of hierarchical macro-/mesoporous silica supports (MMSs) were successfully synthesized using dual-templating technique employing polystyrene (PS) spheres and the Pluronic P123 surfactant. Pd was next loaded on the hierarchical silica supports via colloids precipitation method. Physicochemical properties of the synthesized samples were characterized by various techniques and all catalysts were tested for the total oxidation of -xylene. Among them, the Pd/MMS-b catalyst with tetraethoxysilane/polystyrene weight ratio of 1.0 exhibited superior catalytic activity, and under a higher gas hourly space velocity (GHSV) of 70000 h , the 90% conversion of -xylene has been obtained at around 200°C. The BET and SEM results indicated that Pd/MMS-b catalyst possesses high surface area and large pore volume, and well-ordered, interconnected macropores and 2D hexagonally mesopores hybrid network. This novel ordered hierarchical porous structure was highly beneficial to the dispersion of active sites Pd nanoparticles with less aggregation, and facilitates diffusion of reactants and products. Furthermore, the Pd/MMS-b catalyst possessed good stability and durability.

关键词: hierarchical macro-/mesoporous     silica     palladium     VOCs catalytic oxidation    

Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks

Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 444-457 doi: 10.1007/s11705-019-1811-6

摘要: Plasma catalysis is drawing increasing attention worldwide. Plasma is a partially ionized gas comprising electrons, ions, molecules, radicals, and photons. Integration of catalysis and plasma can enhance catalytic activity and stability. Some thermodynamically unfavorable reactions can easily occur with plasma assistance. Compared to traditional thermal catalysis, plasma reactors can save energy because they can be operated at much lower temperatures or even room temperature. Additionally, the low bulk temperature of cold plasma makes it a good alternative for treatment of temperature-sensitive materials. In this review, we summarize the plasma-assisted reactions involved in dry reforming of methane, CO methanation, the methane coupling reaction, and volatile organic compound abatement. Applications of plasma for modification of metal–organic frameworks are discussed.

关键词: plasma catalysis     methane     carbon dioxide     VOCs     metal–organic frameworks    

Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020

Wei WEI, Shuxiao WANG, Jiming HAO, Shuiyuan CHENG

《环境科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 27-41 doi: 10.1007/s11783-012-0461-4

摘要: This study estimates the detailed chemical profiles of China’s anthropogenic volatile organic compounds (VOCs) emissions for the period of 2005–2020. The chemical profiles of VOCs for seven activity sectors are calculated, based on which the Photochemical Ozone Creation Potential (POCP) of VOCs for these sectors is evaluated. At the national level, the VOCs species emitted in 2005 include alkanes, alkenes and alkynes, aromatic compounds, alcohols, ketones, aldehydes, esters, ethers and halocarbons, accounting for 26.4 wt.%, 29.2 wt.%, 21.3 wt.%, 4.7 wt.%, 5.4 wt.%, 1.7 wt.%, 2.1 wt.%, 0.7 wt.% and 2.2 wt.% of total emissions, respectively. And during 2005-2020, their mass proportions would respectively grow or decrease by -6.9%, -32.7%, 7.3%, 65.3%, 34.7%, -48.6%, 108.5%, 100.5%, and 55.4%. This change would bring about a 13% reduction of POCP for national VOCs emissions in the future. Thus, although the national VOCs emissions are expected to increase by 33% over the whole period, its ozone formation potential is estimated to rise only by 14%. Large discrepancies are found in VOCs speciation emissions among provinces. Compared to western provinces, the eastern provinces with a more developed economy would emit unsaturated hydrocarbons and benzene with lower mix ratios, and aromatic compounds except benzene, oxidized hydrocarbons and halocarbons with higher mix ratios. Such differences lead to lower POCP of VOCs emitted in eastern provinces, and higher POCP of VOCs emitted in western provinces. However, due to the large VOCs emissions from Chinese eastern region, the ozone formation potential of VOCs emission in eastern provinces would be much higher than those in western provinces by about 156%–235%.

关键词: volatile organic compounds (VOCs)     chemical speciation     ozone formation     Photochemical Ozone Creation Potential (POCP)     China    

Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor

Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-018-1017-z

摘要: In this study, post plasma-catalysis degradation of mixed volatile organic compounds (benzene, toluene, and xylene) has been performed in a hybrid surface/packed-bed discharge plasma reactor with Ag-Ce/ g-Al O catalyst at room temperature. The effect of relative air humidity on mixed VOCs degradation has also been investigated in both plasma-only and PPC systems. In comparison to the plasma-only system, a significant improvement can be observed in the degradation performance of mixed VOCs in PPC system with Ag-Ce/ g-Al O catalyst. In PPC system, 68% benzene, 89% toluene, and 94% xylene were degraded at 800 J·L , respectively, which were 25%, 11%, and 9% higher than those in plasma-only system. This result can be attributed to the high catalytic activity of Ag-Ce/ g-Al O catalyst to effectively decompose O and lead to generating more reactive species which are capable of destructing the VOCs molecules completely. Moreover, the presence of Ag-Ce/ g-Al O catalyst in plasma significantly decreased the emission of discharge byproducts (NO and O ) and promoted the mineralization of mixed VOCs towards CO . Adding a small amount of water vapor into PPC system enhanced the degradation efficiencies of mixed VOCs, however, further increasing water vapor had a negative impact on the degradation efficiencies, which was primarily attributed to the quenching of energetic electrons by water vapor in plasma and the competitive adsorption of water vapor on the catalyst surface. Meanwhile, the catalysts before and after discharge were characterized by the Brunauer-Emment-Teller and X-ray photoelectron spectroscopy.

关键词: Mixed VOCs     HSPBD plasma reactor     Degradation     Catalyst     Relative humidity    

标题 作者 时间 类型 操作

Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms

In-Sun Kang, Jinying Xi, Hong-Ying Hu

期刊论文

Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China

Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU

期刊论文

Removal of multicomponent VOCs in off-gases from an oil refining wastewater treatment plant by a compost-based

Dan WU, Chunyan ZHANG, Li HAO, Changjun GENG, Xie QUAN,

期刊论文

Target the neglected VOCs emission from iron and steel industry in China for air quality improvement

期刊论文

Removal of odors and VOCs in municipal solid waste comprehensive treatment plants using a novel three-stage

期刊论文

Chemical speciation and anthropogenic sources of ambient volatile organic compounds (VOCs) during summer

LU Sihua, LIU Ying, SHAO Min, HUANG Shan

期刊论文

Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation

He NIU,Ziwei MO,Min SHAO,Sihua LU,Shaodong XIE

期刊论文

A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds

Wenjing Lu, Yawar Abbas, Muhammad Farooq Mustafa, Chao Pan, Hongtao Wang

期刊论文

The abatement of major pollutants in air and water by environmental catalysis

Junhua LI, Hong HE, Chun HU, Jincai ZHAO

期刊论文

A biofilter model for simultaneous simulation of toluene removal and bed pressure drop under varied inlet loadings

Jinying XI,Insun KANG,Hongying HU,Xian ZHANG

期刊论文

Enhanced performances in catalytic oxidation of

Nanli QIAO,Xin ZHANG,Chi HE,Yang LI,Zhongshen ZHANG,Jie CHENG,Zhengping HAO

期刊论文

Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks

Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li

期刊论文

Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020

Wei WEI, Shuxiao WANG, Jiming HAO, Shuiyuan CHENG

期刊论文

Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor

Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu

期刊论文