资源类型

期刊论文 539

会议视频 6

年份

2024 1

2023 38

2022 46

2021 52

2020 34

2019 53

2018 30

2017 34

2016 21

2015 26

2014 23

2013 31

2012 13

2011 25

2010 18

2009 28

2008 19

2007 16

2006 2

2005 5

展开 ︾

关键词

固体氧化物燃料电池 8

燃料电池 7

SOFC 2

临床试验 2

催化剂 2

双极板 2

固体氧化物电解池 2

太阳电池 2

干细胞 2

氢燃料电池 2

氢能 2

燃烧特性 2

生物质 2

碳中和 2

碳基燃料 2

组织工程 2

高压 2

2035 1

300 M钢 1

展开 ︾

检索范围:

排序: 展示方式:

Failure mode investigation of fuel cell for vehicle application

Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 318-325 doi: 10.1007/s11708-017-0488-0

摘要: The durability of proton exchange membrane fuel cells (PEMFCs) has been posing a key technical challenge to commercial spread of fuel cell vehicles (FCVs). To improve the durability, it is necessary to optimize the fuel cell system (FCS) design against failure modes. The fuel cell durability research method at FCS scale was exhibited, and the failure modes of fuel cell were experimentally investigated in this paper. It is found that the fuel cell dry operation, start/stop cycle and gas diffusion layer (GDL) flooding are typical failure modes of fuel cells. After the modifications against the failure modes, the durability of FCSs is improved to over 3000 h step by step.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel cell system (FCS)     durability     failure mode     fuel cell vehicle (FCV)     carbon corrosion     water management    

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

《能源前沿(英文)》 2019年 第13卷 第2期   页码 325-338 doi: 10.1007/s11708-019-0618-y

摘要: Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.

关键词: PEM fuel cell     gas diffusion electrode(GDE)     gas diffusion layer(GDL)     membrane electrode assembly     durability     fuel cell catalyst    

A hybrid fuel cell for water purification and simultaneously electricity generation

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1611-6

摘要:

● A novel hybrid fuel cell (F-HFC) was fabricated.

关键词: Flow-through field     Hybrid fuel cell     Polyoxometalates     Water purification     Electricity generation    

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

《能源前沿(英文)》 2022年 第16卷 第5期   页码 852-861 doi: 10.1007/s11708-021-0811-7

摘要: Fuel starvation can occur and cause damage to the cell when proton exchange membrane fuel cells operate under complex working conditions. In this case, carbon corrosion occurs. Oxygen evolution reaction (OER) catalysts can alleviate carbon corrosion by introducing water electrolysis at a lower potential at the anode in fuel shortage. The mixture of hydrogen oxidation reaction (HOR) and unsupported OER catalyst not only reduces the electrolysis efficiency, but also influences the initial performance of the fuel cell. Herein, Ti4O7 supported IrOx is synthesized by utilizing the surfactant-assistant method and serves as reversal tolerant components in the anode. When the cell reverse time is less than 100 min, the cell voltage of the MEA added with IrOx/Ti4O7 has almost no attenuation. Besides, the MEA has a longer reversal time (530 min) than IrOx (75 min), showing an excellent reversal tolerance. The results of electron microscopy spectroscopy show that IrOx particles have a good dispersity on the surface of Ti4O7 and IrOx/Ti4O7 particles are uniformly dispersed on the anode catalytic layer. After the stability test, the Ti4O7 support has little decay, demonstrating a high electrochemical stability. IrOx/Ti4O7 with a high dispersity has a great potential to the application on the reversal tolerance anode of the fuel cell.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel starvation     cell reverse     reversal tolerance anode     oxygen evolution reaction    

Analysis on carbon emission reduction intensity of fuel cell vehicles from a life-cycle perspective

《能源前沿(英文)》 doi: 10.1007/s11708-023-0909-1

摘要: The hydrogen fuel cell vehicle is rapidly developing in China for carbon reduction and neutrality. This paper evaluated the life-cycle cost and carbon emission of hydrogen energy via lots of field surveys, including hydrogen production and packing in chlor-alkali plants, transport by tube trailers, storage and refueling in hydrogen refueling stations (HRSs), and application for use in two different cities. It also conducted a comparative study for battery electric vehicles (BEVs) and internal combustion engine vehicles (ICEVs). The result indicates that hydrogen fuel cell vehicle (FCV) has the best environmental performance but the highest energy cost. However, a sufficient hydrogen supply can significantly reduce the carbon intensity and FCV energy cost of the current system. The carbon emission for FCV application has the potential to decrease by 73.1% in City A and 43.8% in City B. It only takes 11.0%–20.1% of the BEV emission and 8.2%–9.8% of the ICEV emission. The cost of FCV driving can be reduced by 39.1% in City A. Further improvement can be obtained with an economical and “greener” hydrogen production pathway.

关键词: hydrogen energy     life-cycle assessment (LCA)     fuel cell vehicle     carbon emission     energy cost    

Significant potential of Solid Oxide Fuel Cell systems for distributed power generation and carbon neutrality

《能源前沿(英文)》 2022年 第16卷 第6期   页码 879-882 doi: 10.1007/s11708-022-0850-8

摘要: . {{custom_ra.content}} . . . {{article.highlightEn}} . . . {{article.abstractEn}} . . . {{article.authorSummayEn}} . . . . .

Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuelcell with direct internal reforming

Yuzhang WANG, Shilie WENG, Yiwu WENG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 195-206 doi: 10.1007/s11708-011-0148-8

摘要: A fully three-dimensional mathematical model of a planar solid oxide fuel cell (SOFC) with complete direct internal steam reforming was constructed to investigate the chemical and electrochemical characteristics of the porous-electrode-supported (PES)-SOFC developed by the Central Research Institute of Electric Power Industry of Japan. The effective kinetic models developed over the Ni/YSZ anode takes into account the heat transfer and species diffusion limitations in this porous anode. The models were used to simulate the methane steam reforming processes at the co- and counter-flow patterns. The results show that the flow patterns of gas and air have certain effects on cell performance. The cell at the counter-flow has a higher output voltage and output power density at the same operating conditions. At the counter-flow, however, a high hotspot temperature is observed in the anode with a non-fixed position, even when the air inlet flow rate is increased. This is disadvantageous to the cell. Both cell voltage and power density decrease with increased air flow rate.

关键词: planar solid oxide fuel cell (SOFC)     direct internal reforming     chemical reaction     methane     electrochemical    

Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode

Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 913-919 doi: 10.1007/s11783-013-0583-3

摘要: A scaled up microbial fuel cell (MFC) of a 50 L volume was set up with an oxic-anoxic two-stage biocathode and activated semicoke packed electrodes to achieve simultaneous power generation and nitrogen and organic matter removals. An average maximum power density of 43.1 W·m was obtained in batch operating mode. By adjusting the two external resistances, the denitrification in the A-MFC and power production in the O-MFC could be enhanced. In continuous mode, when the hydraulic retention times were set at 6 h, 8 h and 12 h, the removal efficiencies of COD, and total nitrogen (TN) were higher than 95%, 97%, and 84%, respectively. Meanwhile the removal loads for COD, and TN were10, 0.37 and 0.4 kg·(m ·d) , respectively.

关键词: microbial fuel cell (MFC)     oxic-anoxic two stage biocathode     denitrifying    

A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria

Xiaoxin CAO , Xia HUANG , Xiaoyuan ZHANG , Peng LIANG , Mingzhi FAN ,

《环境科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 307-312 doi: 10.1007/s11783-009-0028-1

摘要: Current methods for testing the electricity generation capacity of isolates are time- and labor-consuming. This paper presents a rapid voltage testing system of exoelectrogenic bacteria called Quickscreen, which is based on a microliter microbial fuel cell (MFC). and were used as the model exoelectrogenic bacteria; that cannot generate electricity was used as a negative control. It was found that the electricity generation capacity of the isolates could be determined within about five hours by using Quickscreen, and that its time was relatively rapid compared with the time needed by using larger MFCs. A parallel, stable, and low background voltage was achieved using titanium as a current collector in the blank run. The external resistance had little impact on the blank run during the initial period. The cathode with a five-hole configuration, used to hydrate the carbon cathode, gave higher cathode potentials than did that with a one-hole configuration. Steady discharge and current interrupt methods showed that the anode mostly contributed to the large internal resistance of the Quickscreen system. However, the addition of graphite felt decreased the resistance from 18kΩ to 5kΩ. This device was proved to be useful to rapidly evaluate the electricity generation capacity of different bacteria.

关键词: microbial fuel cell     exoelectrogenic bacteria     rapid screening    

锌空燃料电池电站

朱梅,徐献芝,苏润

《中国工程科学》 2004年 第6卷 第12期   页码 62-64

摘要:

燃料电池发电技术已经受到人们越来越多的重视。介绍了利用锌空气燃料电池技术建设电站,利用分体式电极技术制造世界上最大的单电池,该电站采用独特的分离循环技术,可以提高电站总体效率。给出建设电站的相关参数。

关键词: 燃料电池     锌空气燃料电池     分体式电极     单电池     分离循环技术    

Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world

Han HAO, Zhexuan MU, Zongwei LIU, Fuquan ZHAO

《能源前沿(英文)》 2018年 第12卷 第3期   页码 466-480 doi: 10.1007/s11708-018-0561-3

摘要:

Fuel cell vehicles, as the most promising clean vehicle technology for the future, represent the major chances for the developing world to avoid high-carbon lock-in in the transportation sector. In this paper, by taking China as an example, the unique advantages for China to deploy fuel cell vehicles are reviewed. Subsequently, this paper analyzes the greenhouse gas (GHG) emissions from 19 fuel cell vehicle utilization pathways by using the life cycle assessment approach. The results show that with the current grid mix in China, hydrogen from water electrolysis has the highest GHG emissions, at 3.10 kgCO2/km, while by-product hydrogen from the chlor-alkali industry has the lowest level, at 0.08 kgCO2/km. Regarding hydrogen storage and transportation, a combination of gas-hydrogen road transportation and single compression in the refueling station has the lowest GHG emissions. Regarding vehicle operation, GHG emissions from indirect methanol fuel cell are proved to be lower than those from direct hydrogen fuel cells. It is recommended that although fuel cell vehicles are promising for the developing world in reducing GHG emissions, the vehicle technology and hydrogen production issues should be well addressed to ensure the life-cycle low-carbon performance.

关键词: hydrogen     fuel cell vehicle     life cycle assessment     energy consumption     greenhouse gas (GHG) emissions     China    

Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery

Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU

《环境科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 569-574 doi: 10.1007/s11783-011-0335-1

摘要: A sediment microbial fuel cell (SMFC) with three dimensional floating biocathode (FBC) was developed for the electricity generation and biodegradation of sediment organic matter in order to avoid negative effect of dissolved oxygen (DO) depletion in aqueous environments on cathode performance and search cost-effective cathode materials. The biocathode was made from graphite granules with microbial attachment to replace platinum (Pt)-coated carbon paper cathode in a laboratory-scale SMFC (3 L in volume) filled with river sediment (organic content 49±4 g·kg dry weight). After start-up of 10 days, the maximum power density of 1.00W·m (based on anode volume) was achieved. The biocathode was better than carbon paper cathode catalyzed by Pt. The attached biofilm on cathode enhanced power generation significantly. The FBC enhanced SMFC performance further in the presence aeration. The SMFC was continuously operated for an over 120-day period. Power generation peaked within 24 days, declined gradually and stabilized at a level of 1/6 peak power output. At the end, the sediment organic matter content near the anode was removed by 29% and the total electricity generated was equal to 0.251 g of chemical oxygen demand (COD) removed.

关键词: microbial fuel cell (MFC)     sediment     biocathode     electricity generation     organic removal    

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 334-364 doi: 10.1007/s11708-017-0490-6

摘要: Ionomer impregnation represents a milestone in the evolution of polymer electrolyte fuel cell (PEFC) catalyst layers. Ionomer acts as the binder, facilitates proton transport, and thereby drastically improves catalyst utilization and effectiveness. However, advanced morphological and functional characterizations have revealed that up to 60% of Pt nanoparticles can be trapped in the micropores of carbon support particles. Ionomer clusters and oxygen molecules can hardly enter into micropores, leading to low Pt utilization and effectiveness. Moreover, the ionomer thin-films covering Pt nanoparticles can cause significant mass transport loss especially at high current densities. Ionomer-free ultra-thin catalyst layers (UTCLs) emerge as a promising alternative to reduce Pt loading by improving catalyst utilization and effectiveness, while theoretical issues such as the proton conduction mechanism remain puzzling and practical issues such as the rather narrow operation window remain unsettled. At present, the development of PEFC catalyst layer has come to a crossroads: staying ionomer-impregnated or going ionomer-free. It is always beneficial to look back into the past when coming to a crossroads. This paper addresses the characterization and modeling of both the conventional ionomer-impregnated catalyst layer and the emerging ionomer-free UTCLs, featuring advances in characterizing microscale distributions of Pt particles, ionomer, support particles and unraveling their interactions; advances in fundamental understandings of proton conduction and flooding behaviors in ionomer-free UTCLs; advances in modeling of conventional catalyst layers and especially UTCLs; and discussions on high-impact research topics in characterizing and modeling of catalyst layers.

关键词: polymer electrolyte fuel cell     ultra-thin catalyst layer     electrostatic interactions     characterization and modeling     structure-property-performance relation     water management    

Microbial fuel cell with high content solid wastes as substrates: a review

Qingliang Zhao,Hang Yu,Weixian Zhang,Felix Tetteh Kabutey,Junqiu Jiang,Yunshu Zhang,Kun Wang,Jing Ding

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0918-6

摘要: Fundamentals and configuration design of MFCs fueled by HCSW were reviewed. HCSWs including sewage sludge, biomass and biowaste treated in MFCs were summarized. HCSW based MFCs technologies covered the types of sediment, soil, wetland and plant. Activated sludge process and composting could be coupled with HCSW-MFCs. HCSW-MFCs could be applied in bioremediation and biosensing. With the increasing concern about the serious global energy crisis and high energy consumption during high content solid wastes (HCSWs) treatment, microbial fuel cell (MFC) has been recognized as a promising resource utilization approach for HCSW stabilization with simultaneous electrical energy recovery. In contrast to the conventional HCSW stabilization processes, MFC has its unique advantages such as direct bio-energy conversion in a single step and mild reaction conditions (viz., ambient temperature, normal pressure, and neutral pH). This review mainly introduces some important aspects of electricity generation from HCSW and its stabilization in MFC, focusing on: (1) MFCs with different fundamentals and configurations designed and constructed to produce electricity from HCSW; (2) performance of wastes degradation and electricity generation; (3) prospect and deficiency posed by MFCs with HCSW as substrates. To date, the major drawback of MFCs fueled by HCSW is the lower power output than those using simple substrates. HCSW hydrolysis and decomposition would be a major tool to improve the performance of MFCs. The optimization of parameters is needed to push the progress of MFCs with HCSW as fuel.

关键词: Microbial fuel cell     High content solid wastes     Substrate     Bioremediation     Biosensor    

Part-load, startup, and shutdown strategies of a solid oxide fuel cell-gas turbine hybrid system

Yang LI, Yiwu WENG, Shilie WENG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 181-194 doi: 10.1007/s11708-011-0149-7

摘要: Current work on the performance of a solid oxide fuel cell (SOFC) and gas turbine hybrid system is presented. Each component model developed and applied is mathematically defined. The electrochemical performance of single SOFC with different fuels is tested. Experimental results are used to validate the SOFC mathematical model. Based on the simulation model, a safe operation regime of the hybrid system is accurately plotted first. Three different part-load strategies are introduced and used to analyze the part-load performance of the hybrid system using the safe regime. Another major objective of this paper is to introduce a suitable startup and shutdown strategy for the hybrid system. The sequences for the startup and shutdown are proposed in detail, and the system responses are acquired with the simulation model. Hydrogen is used instead of methane during the startup and shutdown process. Thus, the supply of externally generated steam is not needed for the reforming reaction. The gas turbine is driven by complementary fuel and supplies compressed air to heat up or cool down the SOFC stack operating temperature. The dynamic simulation results show that smooth cooling and heating of the cell stack can be accomplished without external electrical power.

关键词: solid oxide fuel cell (SOFC)     hybrid system     part-load strategy     startup     shutdown    

标题 作者 时间 类型 操作

Failure mode investigation of fuel cell for vehicle application

Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG

期刊论文

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

期刊论文

A hybrid fuel cell for water purification and simultaneously electricity generation

期刊论文

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

期刊论文

Analysis on carbon emission reduction intensity of fuel cell vehicles from a life-cycle perspective

期刊论文

Significant potential of Solid Oxide Fuel Cell systems for distributed power generation and carbon neutrality

期刊论文

Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuelcell with direct internal reforming

Yuzhang WANG, Shilie WENG, Yiwu WENG

期刊论文

Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode

Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG

期刊论文

A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria

Xiaoxin CAO , Xia HUANG , Xiaoyuan ZHANG , Peng LIANG , Mingzhi FAN ,

期刊论文

锌空燃料电池电站

朱梅,徐献芝,苏润

期刊论文

Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world

Han HAO, Zhexuan MU, Zongwei LIU, Fuquan ZHAO

期刊论文

Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery

Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU

期刊论文

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

期刊论文

Microbial fuel cell with high content solid wastes as substrates: a review

Qingliang Zhao,Hang Yu,Weixian Zhang,Felix Tetteh Kabutey,Junqiu Jiang,Yunshu Zhang,Kun Wang,Jing Ding

期刊论文

Part-load, startup, and shutdown strategies of a solid oxide fuel cell-gas turbine hybrid system

Yang LI, Yiwu WENG, Shilie WENG

期刊论文