资源类型

期刊论文 7

年份

2022 1

2019 1

2016 3

关键词

检索范围:

排序: 展示方式:

Ionically Imprinting-Based Copper (Ⅱ) Label-Free Detection for Preventing Hearing Loss Article

Huan Wang, Hui Zhang, Xiaoli Zhang, Hong Chen, Ling Lu, Renjie Chai

《工程(英文)》 doi: 10.1016/j.eng.2023.09.001

摘要:

Copper is a microelement with important physiological functions in the body. However, the excess copper ion (Cu2+) may cause severe health problems, such as hair cell apoptosis and the resultant hearing loss. Therefore, the assay of Cu2+ is important. We integrate ionic imprinting technology (IIT) and structurally colored hydrogel beads to prepare chitosan-based ionically imprinted hydrogel beads (IIHBs) as a low-cost and high-specificity platform for Cu2+ detection. The IIHBs have a macroporous microstructure, uniform size, vivid structural color, and magnetic responsiveness. When incubated in solution, IIHBs recognize Cu2+ and exhibit a reflective peak change, thereby achieving label-free detection. In addition, benefiting from the IIT, the IIHBs display good specificity and selectivity and have an imprinting factor of 19.14 at 100 lmolL–1. These features indicated that the developed IIHBs are promising candidates for Cu2+ detection, particularly for the prevention of hearing loss.

关键词: Structural color     Microfluidics Ionic imprinting     Label-free detection     Hearing loss    

Research progress in pathogenic genes of hereditary non-syndromic mid-frequency deafness

null

《医学前沿(英文)》 2016年 第10卷 第2期   页码 137-142 doi: 10.1007/s11684-016-0449-8

摘要:

Hearing impairment is considered as the most prevalent impairment worldwide. Almost 600 million people in the world suffer from mild or moderate hearing impairment, an estimated 10% of the human population. Genetic factors play an important role in the pathogenesis of this disorder. Hereditary hearing loss is divided into syndromic hearing loss (associated with other anomalies) and non-syndromic hearing loss (not associated with other anomalies). Approximately 80% of genetic deafness is non-syndromic. On the basis of the frequency of hearing loss, hereditary non-syndromic hearing loss can be divided into high-, mid-, low-, and total-frequency hearing loss. An audiometric finding of mid-frequency sensorineural hearing loss, or a “bowl-shaped” audiogram, is uncommon. Up to now, merely 7 loci have been linked to mid-frequency hearing loss. Only four genetic mid-frequency deafness genes, namely, DFNA10 (EYA4), DFNA8/12 (TECTA), DFNA13 (COL11A2), DFNA44 (CCDC50), have been reported to date. This review summarizes the research progress of the four genes to draw attention to mid-frequency deafness genes.

关键词: hereditary non-syndromic hearing loss     mid-frequency hearing loss     deafness genes    

美国发布新规定以降低助听器购买门槛

Mitch Leslie

《工程(英文)》 2022年 第14卷 第7期   页码 7-9 doi: 10.1016/j.eng.2022.05.008

Alternative splicing of inner-ear-expressed genes

null

《医学前沿(英文)》 2016年 第10卷 第3期   页码 250-257 doi: 10.1007/s11684-016-0454-y

摘要:

Alternative splicing plays a fundamental role in the development and physiological function of the inner ear. Inner-ear-specific gene splicing is necessary to establish the identity and maintain the function of the inner ear. For example, exon 68 of Cadherin 23 (Cdh23) gene is subject to inner-ear-specific alternative splicing, and as a result, Cdh23(+68) is only expressed in inner ear hair cells. Alternative splicing along the tonotopic axis of the cochlea contributes to frequency tuning, particularly in lower vertebrates, such as chickens and turtles. Differential splicing of Kcnma1, which encodes for the α subunit of the Ca2+-activated K+ channel (BK channel), has been suggested to affect the channel gating properties and is important for frequency tuning. Consequently, deficits in alternative splicing have been shown to cause hearing loss, as we can observe in Bronx Waltzer (bv) mice and Sfswap mutant mice. Despite the advances in this field, the regulation of alternative splicing in the inner ear remains elusive. Further investigation is also needed to clarify the mechanism of hearing loss caused by alternative splicing deficits.

关键词: alternative splicing     inner ear     hearing loss     hair cells    

Panoramic variation analysis of a family with neurodevelopmental disorders caused by biallelic loss-of-function variants in , , and

《医学前沿(英文)》 doi: 10.1007/s11684-023-1006-x

摘要: Highly clinical and genetic heterogeneity of neurodevelopmental disorders presents a major challenge in clinical genetics and medicine. Panoramic variation analysis is imperative to analyze the disease phenotypes resulting from multilocus genomic variation. Here, a Pakistani family with parental consanguinity was presented, characterized with severe intellectual disability (ID), spastic paraplegia, and deafness. Homozygosity mapping, integrated single nucleotide polymorphism (SNP) array, whole-exome sequencing, and whole-genome sequencing were performed, and homozygous variants in TMEM141 (c.270G>A, p.Trp90*), DDHD2 (c.411+767_c.1249-327del), and LHFPL5 (c.250delC, p.Leu84*) were identified. A Tmem141p.Trp90*/p.Trp90* mouse model was generated. Behavioral studies showed impairments in learning ability and motor coordination. Brain slice electrophysiology and Golgi staining demonstrated deficient synaptic plasticity in hippocampal neurons and abnormal dendritic branching in cerebellar Purkinje cells. Transmission electron microscopy showed abnormal mitochondrial morphology. Furthermore, studies on a human in vitro neuronal model (SH-SY5Y cells) with stable shRNA-mediated knockdown of TMEM141 showed deleterious effect on bioenergetic function, possibly explaining the pathogenesis of replicated phenotypes in the cross-species mouse model. Conclusively, panoramic variation analysis revealed that multilocus genomic variations of TMEM141, DDHD2, and LHFPL5 together caused variable phenotypes in patient. Notably, the biallelic loss-of-function variants of TMEM141 were responsible for syndromic ID.

关键词: neurodevelopmental disorder     autosomal recessive intellectual disability     consanguinity     spastic paraplegia     hearing loss     TMEM141    

Loss of liver kinase B1 causes planar polarity defects in cochlear hair cells in mice

null

《医学前沿(英文)》 2016年 第10卷 第4期   页码 481-489 doi: 10.1007/s11684-016-0494-3

摘要:

The tumor suppressor gene liver kinase B1 (LKB1), also called STK11, encodes a serine/threonine kinase. LKB1 plays crucial roles in cell differentiation, proliferation, and polarity. In this study, LKB1 conditional knockout mice (LKB1Pax2 CKO mice) were generated using Pax2-Cre mice to investigate the function of LKB1 in inner ear hair cells during early embryonic period. LKB1Pax2 CKO mice died perinatally. Immunofluorescence and scanning electron microscopy revealed that stereociliary bundles in LKB1Pax2 CKO mice were clustered and misoriented, respectively. Moreover, ectopic distribution of kinocilium bundles resulting from abnormal migration of kinocilium was observed in the mutant mice. The orientation of stereociliary bundles and the migration of kinocilia are critical indicators of planar cell polarity (PCP) of hair cells. LKB1 deficiency in LKB1Pax2 CKO mice thus disrupted hair cell planar polarity during embryonic development. Our results suggest that LKB1 is required in PCP formation in cochlear hair cells in mice.

关键词: LKB1     stereociliary bundles     kinocilium     planar cell polarity     hearing     mice    

is essential for the integrity of stereociliary rootlet in cochlear hair cells in mice

Yuqin Men, Xiujuan Li, Hailong Tu, Aizhen Zhang, Xiaolong Fu, Zhishuo Wang, Yecheng Jin, Congzhe Hou, Tingting Zhang, Sen Zhang, Yichen Zhou, Boqin Li, Jianfeng Li, Xiaoyang Sun, Haibo Wang, Jiangang Gao

《医学前沿(英文)》 2019年 第13卷 第6期   页码 690-704 doi: 10.1007/s11684-018-0638-8

摘要: encodes the taperin protein, which is concentrated in the tapered region of hair cell stereocilia in the inner ear. In humans, mutations cause autosomal recessive nonsyndromic deafness (DFNB79) by an unknown mechanism. To determine the role of in hearing, we generated -null mice by clustered regularly interspaced short palindromic repeat/Cas9 genome-editing technology from a CBA/CaJ background. We observed significant hearing loss and progressive degeneration of stereocilia in the outer hair cells of -null mice starting from postnatal day 30. Transmission electron microscopy images of stereociliary bundles in the mutant mice showed some stereociliary rootlets with curved shafts. The central cores of the stereociliary rootlets possessed hollow structures with surrounding loose peripheral dense rings. Radixin, a protein expressed at stereocilia tapering, was abnormally dispersed along the stereocilia shafts in null mice. The expression levels of radixin and -actin significantly decreased. We propose that is critical to the retention of the integrity of the stereociliary rootlet. Loss of in -null mice caused the disruption of the stereociliary rootlet, which resulted in damage to stereociliary bundles and hearing impairments. The generated -null mice are ideal models of human hereditary deafness DFNB79.

关键词: TPRN     stereocilia     stereociliary rootlet     actin filament     CRISPR/Cas9     hearing    

标题 作者 时间 类型 操作

Ionically Imprinting-Based Copper (Ⅱ) Label-Free Detection for Preventing Hearing Loss

Huan Wang, Hui Zhang, Xiaoli Zhang, Hong Chen, Ling Lu, Renjie Chai

期刊论文

Research progress in pathogenic genes of hereditary non-syndromic mid-frequency deafness

null

期刊论文

美国发布新规定以降低助听器购买门槛

Mitch Leslie

期刊论文

Alternative splicing of inner-ear-expressed genes

null

期刊论文

Panoramic variation analysis of a family with neurodevelopmental disorders caused by biallelic loss-of-function variants in , , and

期刊论文

Loss of liver kinase B1 causes planar polarity defects in cochlear hair cells in mice

null

期刊论文

is essential for the integrity of stereociliary rootlet in cochlear hair cells in mice

Yuqin Men, Xiujuan Li, Hailong Tu, Aizhen Zhang, Xiaolong Fu, Zhishuo Wang, Yecheng Jin, Congzhe Hou, Tingting Zhang, Sen Zhang, Yichen Zhou, Boqin Li, Jianfeng Li, Xiaoyang Sun, Haibo Wang, Jiangang Gao

期刊论文