资源类型

期刊论文 20

年份

2023 3

2022 4

2021 1

2020 1

2018 1

2015 4

2014 2

2013 1

2012 1

2009 1

2008 1

展开 ︾

关键词

井壁稳定 1

亲/疏水界面修饰 1

半导体可靠性 1

微机电系统(MEMS) 1

湿度 1

电芬顿 1

疏水 1

纳米复合涂层 1

纳米颗粒 1

蒸汽压力 1

超疏水 1

过氧化氢 1

钻井液 1

难降解有机物 1

页岩抑制剂 1

展开 ︾

检索范围:

排序: 展示方式:

Highly hydrophobic oil−water separation membrane: reutilization of waste reverse osmosis membrane

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1606-1615 doi: 10.1007/s11705-022-2200-0

摘要: The increasing applications of seawater desalination technology have led to the wide usage of polyamide reverse osmosis membranes, resulting in a large number of wasted reverse osmosis membranes. In this work, the base nonwoven layer of the wasted reverse osmosis membrane was successfully modified into the hydrophobic membrane via surface deposition strategy including TiO2 and 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS), respectively. Various techniques were applied to characterize the obtained membranes, which were then used to separate the oil–water system. The optimally modified membrane displayed good hydrophobicity with a contact angle of 135.2° ± 0.3°, and its oil–water separation performance was as high as 97.8%. After 20 recycle tests, the oil–water separation performance remained more than 96%, which was attributed to the film adhesion of the anchored TiO2 and PFOTS layer on the surface. This work might provide a new avenue for recycling the wasted reverse osmosis membrane used in oily wastewater purification.

关键词: oil–water separation     wasted reverse osmosis membrane     hydrophobic modification    

Role of water chemistry on estrone removal by nanofiltration with the presence of hydrophobic acids

Xue JIN,Jiangyong HU

《环境科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 164-170 doi: 10.1007/s11783-014-0747-9

摘要: Hydrophobic acid organic matter (HpoA) extracted from treated effluent has been known to improve the rejection of steroid hormone estrone by reverse osmosis (RO) and nanofiltration (NF) membranes. In this study, the effects of solution chemistry (solution pH and ionic strength) on the estrone rejection by NF membrane with the presence of HpoA were systematically investigated. Crossflow nanofiltration experiments show that the presence of HpoA significantly improved estrone rejection at all pH and ionic strength levels investigated. It is consistently shown that the “enhancement effect” of HpoA on estrone rejection at neutral and alkaline pH is attributed to the binding of estrone by HpoA macromolecules via hydrogen bonding between phenolic functional groups in feed solutions, which leads to an increase in molecular weight and appearance of negative charge. The membrane exhibited the best performance in terms of estrone rejection at pH 10.4 (compared to pH 4 and pH 7) as a result of strengthening the electrostatic repulsion between estrone and membrane with the presence of HpoA. At neutral pH level, the ability of HpoA macromolecules to promote estrone rejection became stronger with increasing ionic strength due to their more extended conformation, which created more chances for the association between estrone and HpoA. The important conclusion of this study is that increasing solution pH and salinity can greatly intensify the “enhancement effect” of HpoA. These results can be important for NF application in direct/indirect potable water reuse.

关键词: indirect potable water reuse     steroid hormone     nanofiltration(NF)     rejection     water chemistry     hydrophobic acids    

hydrophobic environment triggering reactive fluorescence probe to real-time monitor mitochondrial DNA

《化学科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 92-102 doi: 10.1007/s11705-021-2063-9

摘要: Mitochondrial DNA has a special structure that is prone to damage resulting in many serious diseases, such as genetic diseases and cancers. Therefore, the rapid and specific monitoring of mitochondrial DNA damage is urgently needed for biological recognition. Herein, we constructed an in situ hydrophobic environment-triggering reactive fluorescence probe named MBI-CN. The fluorophore was 2-styrene-1H-benzo[d]imidazole, and malononitrile was introduced as a core into a molecule to initiate the hydrolysis reaction in the specific environment containing damaged mitochondrial DNA. In this design, MBI-CN conjugates to mitochondrial DNA without causing additional damages. Thus, MBI-CN can be hydrolyzed to generate MBI-CHO in an in situ hydrophobic environment with mitochondrial DNA damage. Meanwhile, MBI-CHO immediately emitted a significative fluorescence signal changes at 437 and 553 nm within 25 s for the damaged mitochondria DNA. Give that the specific and rapid response of MBI-CN does not cause additional damages to mitochondrial DNA, it is a potentially effective detection tool for the real-time monitoring of mitochondrial DNA damage during cell apoptosis and initial assessment of cell apoptosis.

关键词: hydrolysis reaction     mitochondrial DNA damage     in situ hydrophobic environment trigger     fluorescence probe     apoptosis    

Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in

ZHANG Dong,ZHU Lizhong

《环境科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 305-315 doi: 10.1007/s11783-014-0647-z

摘要: Bioremediation of hydrophobic organic compounds (HOCs) contaminated soils involves several physicochemical and microbiological interfacial processes among the soil-water-microorganism interfaces. The participation of surfactants facilitates the mass transport of HOCs in both the physicochemical and microbiological interfaces by reducing the interfacial tension. The effects and underlying mechanisms of surfactants on the physicochemical desorption of soil-sorbed HOCs have been widely studied. This paper reviewed the progress made in understanding the effects of surfactant on microbiological interfacial transport of HOCs and the underlying mechanisms, which is vital for a better understanding and control of the mass transfer of HOCs in the biodegradation process. In summary, surfactants affect the microbiological interfacial behaviors of HOCs during three consecutive processes: the soil solution-microorganism sorption, the transmembrane process, and the intracellular metabolism. Surfactant could promote cell sorption of HOCs depending on the compatibility of surfactant hydrophile hydrophilic balance (HLB) with cell surface properties; while the dose ratio between surfactant and biologic mass (membrane lipids) determined the transmembrane processes. Although surfactants cannot easily directly affect the intracellular enzymatic metabolism of HOCs due to the steric hindrace, the presence of surfactants can indirectly enhanced the metabolism by increasing the substrate concentrations.

关键词: biodegradation     sorption     transmembrane transport     microbiological interfaces     surfactants    

Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and

Juichen YANG,Hong CHEN,Yuan YUAN,Debanjan SARKAR,Jie ZHENG

《化学科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 498-510 doi: 10.1007/s11705-014-1451-9

摘要: Design of biocompatible and biodegradable polymer systems for sustained and controlled release of bioactive agents is critical for numerous biomedical applications. Here, we designed, synthesized, and characterized four polyurethane carrier systems for controlled release of model drugs. These polyurethanes are biocompatible and biodegradable because they consist of biocompatible poly(ethylene glycol) or poly(caprolactone diol) as soft segment, linear aliphatic hexamethylene diisocyanate or symmetrical aliphatic cyclic dicyclohexylmethane-4,4′-diisocyanate as hard segment, and biodegradable urethane linkage. They were characterized with Fourier transform infrared spectroscopy, atomic force microscope, and differential scanning calorimetry, whereas their degradation behaviors were investigated in both phosphate buffered saline and enzymatic solutions. By tuning polyurethane segments, different release profiles of hydrophobic and hydrophilic drugs were obtained in the absence and presence of enzymes. Such difference in release profiles was attributed to a complex interplay among structure, hydrophobicity, and degradability of polyurethanes, the size and hydrophobicity of drugs, and drug-polymer interactions. Different drug-polyurethane combinations modulated the distribution and location of the drugs in polymer matrix, thus inducing different drug release mechanisms. Our results highlight an important role of segmental structure of the polyurethane as an engineering tool to control drug release.

关键词: phase structure     degradation     polyurethanes     controlled release     drug delivery    

Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation

Kai Wang, Jinbo Pang, Liwei Li, Shengzhe Zhou, Yuhao Li, Tiezhu Zhang

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 376-382 doi: 10.1007/s11705-018-1705-z

摘要:

Carbon nanotubes/graphene composites have superior mechanical, electrical and electrochemistry properties with carbon nanotubes as a hydrophobicity boosting agent. Their extraordinary hydrophobic performance is highly suitable for electrode applications in lithium ion batteries and supercapacitors which often employ organic electrolytes. Also the hydrophobic features enable the oil enrichment for the crude oil separation from seawater. The ever reported synthesis routes towards such a composite either involve complicated multi-step reactions, e.g., chemical vapor depositions, or lead to insufficient extrusion of carbon nanotubes in the chemical reductions of graphene oxide, e.g., fully embedding between the compact graphene oxide sheets. As a consequence, the formation of standalone carbon nanotubes over graphene sheets remains of high interests. Herein we use the facile flash light irradiation method to induce the reduction of graphene oxides in the presence of carbon nanotubes. Photographs, micrographs, X-ray diffraction, infrared spectroscopy and thermogravimetric analysis all indicate that graphene oxides has been reduced. And the contact angle tests confirm the excellent hydrophobic performances of the synthesized carbon nanotube/reduced graphene oxide composite films. This one-step treatment represents a straightforward and high efficiency way for the reduction of carbon nanotubes/graphene oxides composites.

关键词: carbon nanotubes     graphene composite     flash irradiation method     reduced graphene oxide     contact angles    

Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics

Lin ZHANG, Yan SUN

《化学科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 456-463 doi: 10.1007/s11705-013-1357-y

摘要: Hydrophobic charge induction chromatography (HCIC) is a mixed-mode chromatography which is advantageous for high adsorption capacity and facile elution. The effect of the ligand chain length on protein behavior in HCIC was studied. A coarse-grain adsorbent pore model established in an earlier work was modified to construct adsorbents with different chain lengths, including one with shorter ligands (CL2) and one with longer ligands (CL4). The adsorption, desorption, and conformational transition of the proteins with CL2 and CL4 were examined using molecular dynamics simulations. The ligand chain length has a significant effect on both the probability and the irreversibility of the adsorption/desorption. Longer ligands reduced the energy barrier of adsorption, leading to stronger and more irreversible adsorption, as well as a little more unfolding of the protein. The simulation results elucidated the effect of the ligand chain length, which is beneficial for the rational design of adsorbents and parameter optimization for high-performance HCIC.

关键词: adsorption     desorption     irreversibility     protein conformational transition     molecular dynamics simulation    

Incorporation of 3-dimensional lycopodium with hydrophobic nature and interconnected nano-channels into

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1162-1182 doi: 10.1007/s11705-022-2276-6

摘要: In the present research, for the first time, lycopodium as a novel nanofiller was incorporated into a polyvinylidene fluoride matrix to fabricate lycopodium/polyvinylidene fluoride flat-sheet membrane for desalination applications by vacuum membrane distillation process. The prepared lycopodium/polyvinylidene fluoride membranes and lycopodium were characterized by field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared, energy dispersive X-ray, and mapping analyses. Water contact angle and liquid entry pressure measurements were also performed. Response surface methodology was applied to optimize membrane structure and performance. The optimized lycopodium/polyvinylidene fluoride membrane exhibits superior performance compared to the neat polyvinylidene fluoride membrane in terms of flux, salt rejection, water contact angle, and hydrophobicity. In vacuum membrane distillation experiments, using a 15000 ppm NaCl solution as a feed at 70 °C, the neat polyvinylidene fluoride membrane, optimum membrane, and agglomerated membrane (with high lycopodium loading) demonstrated 3.80, 25.20, and 14.83 LMH flux and 63.30%, 99.99%, 99.96% salt rejection, respectively. This improvement in flux and salt rejection of the optimized membrane was related to the presence of lycopodium with hydrophobic nature and interconnected nano-channels in membrane structure. It was found that lycopodium, as the most hydrophobic material, effectively influences the membrane performance and structure for membrane distillation applications.

关键词: lycopodium     hydrophobicity     vacuum membrane distillation     desalination    

Hydrophobic polyethersulfone porous membranes for membrane distillation

Heba ABDALLAH, Ayman EL-GENDI, Maaly KHEDR, Elham EL-ZANATI

《化学科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 84-93 doi: 10.1007/s11705-015-1508-4

摘要: Membrane distillation (MD) is a thermal, vapor-driven transportation process through micro porous hydrophobic membranes that is increasingly being applied to seawater and brine desalination processes. Two types of hydrophobic microporous polyethersulfone flat sheet membranes, namely, annealed polyethersulfone and a polyethersulfone/tetraethoxysilane (PES/TEOS) blend were prepared by a phase inversion process. The membranes were characterized and their performances were investigated using the vacuum membrane distillation of an aqueous NaCl solution. The performances of the prepared membranes were also compared with two commercially available hydrophobic membranes, polytetrafluorethylene and polyvinylidene fluoride. The influence of operational parameters such as feed temperature (25–65 °C), permeate vacuum pressure (200–800 mbar), feed flow rate (8–22 mL/s) and feed salt concentration (3000 to 35000 mg/L) on the MD permeation flux were investigated for the four membranes. The hydrophobic PES/TEOS membrane had the highest salt rejection (99.7%) and permeate flux (86 kg/m ·h) at 65 °C, with a feed of 7000 ppm and a pressure of 200 mbar.

关键词: membrane distillation     hydrophobic membrane     salt rejection     permeate flux    

selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-021-1474-7

摘要:

• PA layer properties tune the primary nanochannels in MIL-101(Cr) TFN NF membranes.

关键词: Porous metal organic framework     Thin-film nanocomposite membrane     Primary selective nanochannels     Nanofiltration     Endocrine disrupting compounds    

Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and

ZHU Dongmei, WANG Fei, GAO Cuiling, XU Zheng

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 253-256 doi: 10.1007/s11705-008-0049-5

摘要: This paper reports an easy and effective way to fabricate polystyrene/poly (-isopropylacrylamide) (PS/PNIPAM) core-shell particles and PNIPAM hollow spheres. The main point of the method is to take advantage of the hydrophobic interaction between initiator and PS particles. The hydrophobic azodiisobutyronitriles automatically concentrate around the PS particles and initiate polymerization of -isopropylacrylamide (NIPAM) and the crosslinker methylene bisacrylamide (MBA), which dissolve in the aqueous phase, at the surface of the PS nanoparticles. Then, PNIPAM adheres to the PS particles to form a core-shell structure as a result of their hydrophobic interaction. This interaction is due to the unique property of PNIPAM, namely, its ability to transition from hydrophilic to hydrophobic when the temperature rises to 32°C. Furthermore, the hollow PNIPAM spheres were obtained by etching the PS core with chloroform.

关键词: initiator     core-shell     transition     polystyrene/poly     advantage    

利用改性纳米二氧化硅在页岩表面构建层次结构疏水表面强化钻井工程中的井壁稳定性 Article

黄贤斌, 孙金声, 李贺, 王韧, 吕开河, 李海潮

《工程(英文)》 2022年 第11卷 第4期   页码 101-110 doi: 10.1016/j.eng.2021.05.021

摘要:

井壁稳定性对于油气勘探开发过程中的安全高效钻井至关重要。本文介绍了一种可以在水基钻井液钻井过程中强化井壁稳定性的疏水型纳米二氧化硅(HNS),采用线性膨胀实验、滚动回收率实验和抗压强度测试研究了其井壁强化性能,利用zeta 电位、粒径、接触角、表面张力等测试和扫描电子显微镜(SEM)观察分析了井壁强化机理。此外,利用接触角法计算了HNS处理前后页岩表面自由能的变化。实验结果表明,HNS在抑制页岩膨胀和分散方面表现出良好的性能,优于常用的页岩抑制剂KCl和聚胺。与水相比,HNS可使膨润土试样的线性膨胀高度降低20%,对强水化页岩的回收率提高11.53 倍。更重要的是,HNS可有效防止页岩强度的降低。机理研究表明,HNS良好的井壁强化性能可归因于三个方面:首先,带正电荷的HNS通过静电吸附中和部分黏土表面的负电荷,从而抑制渗透水化作用;其次,HNS在页岩表面吸附后可形成具有微纳米层次结构的“荷叶状”表面,显著增加页岩表面的水相接触角,大幅度降低了页岩表面自由能,从而抑制表面水化;再次,毛细作用的减弱和页岩孔隙的有效封堵减少了水的侵入,对井壁稳定有利。本文所述的方法对于抑制页岩的表面水化和渗透水化提供了一种新途径。

关键词: 疏水     纳米颗粒     页岩抑制剂     钻井液     井壁稳定    

Preparation and properties of a silver particle-coated and 1-dodecanethiol-modified superhydrophobic melamine sponge for oil/water separation

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1237-1246 doi: 10.1007/s11705-022-2140-8

摘要: A Ag particle-coated and 1-dodecanethiol-modified melamine sponge (Ag-DDT-MS) was prepared through surface roughness by coating silver particles and subsequent grafting of a hydrophobic long hydrocarbon chain. Superhydrophobic and 3D porous Ag-DDT-MS was characterized by Fourier transform infrared spectroscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The water contact angle of Ag-DDT-MS reached 159.2°. Ag-DDT-MS exhibited excellent absorption capacity for high viscous oils and organic solvents, ranging from 42.8 to 105.2 g∙g−1. The absorbed oils can be easily collected by the mechanical pressing process, and the oil recovery rate was satisfactory, more than 90% after 20 recycles. Ag-DDT-MS material also demonstrated good stability and excellent compression-recovery ability, keeping 88.6% of the initial height after ten compression-release cycles.

关键词: melamine sponge     oil-absorbing material     hydrophobic     oil-water separation     oil absorption capacity    

Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating

Jiajia Li, Shengcheng Zhai, Weibing Wu, Zhaoyang Xu

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1158-1168 doi: 10.1007/s11705-020-2021-z

摘要: In this paper, we employed a facile approach to prepare flexible and porous metal-organic frameworks (MOFs) containing cellulose nanofiber (CNF) aerogels (MNCAs) through freeze-drying MOF-containing cellulose nanofiber suspensions. After coating with methyltrimethoxysilane (MTMS) by chemical vapor deposition, recycled and hydrophobic MTMS-coated MNCAs (MMNCAs) were obtained. Due to the low density (0.009 g/cm ), high porosity (97%) and good mechanical properties of the aerogel, the adsorption capacity of MMNCAs reached up to 210 g/g, which was nearly 3‒5 times that of pure CNF aerogels. These prepared aerogels showed excellent oil/water selectivity and high capacity to adsorb oil and organic solvents. This kind of cellulose-based aerogel may be applicable in the field of environmental protection.

关键词: cellulose nanofibers     aerogels     metal-organic framework     oil-adsorption    

蒸汽压力和超疏水纳米复合涂层对微电子器件可靠性的影响 Article

樊学军,陈良彪,汪正平,Hsing-Wei Chu,张国旗

《工程(英文)》 2015年 第1卷 第3期   页码 384-390 doi: 10.15302/J-ENG-2015034

摘要:

由于高蒸汽压力可能导致微电子器件在高温和高湿度环境中失效,蒸汽压力的描述和模拟对研究微电子器件的湿度可靠性至关重要。为了最大程度地减小湿度的影响,可以在器件外表面涂抹一层超疏水涂层,以防止水分渗入。但是,超疏水涂层提高微电子器件可靠性的具体机制目前仍没有完全被理解。本文首先介绍了微电子高分子材料蒸汽压力的现有的一些理论。笔者还根据实验结果论述了超疏水涂层在防止水蒸气进入器件方面的机制和有效性。本文重点讨论了两个理论模型:基于微观力学的全场蒸汽压力模型和对流扩散模型。这两种方法都已成功用于说明无涂层样本的实验结果。但是,当器件上涂有超疏水纳米复合涂层时,笔者仍发现器件质量增加,其原因很可能是水蒸气可以透过超疏水涂层渗入。这种现象导致人们对超疏水涂层的有效性产生怀疑。根据理论和实验结果,笔者认为需要提出一种新的理论来理解水蒸气如何渗透超疏水涂层。

关键词: 蒸汽压力     湿度     半导体可靠性     微机电系统(MEMS)     超疏水     纳米复合涂层    

标题 作者 时间 类型 操作

Highly hydrophobic oil−water separation membrane: reutilization of waste reverse osmosis membrane

期刊论文

Role of water chemistry on estrone removal by nanofiltration with the presence of hydrophobic acids

Xue JIN,Jiangyong HU

期刊论文

hydrophobic environment triggering reactive fluorescence probe to real-time monitor mitochondrial DNA

期刊论文

Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in

ZHANG Dong,ZHU Lizhong

期刊论文

Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and

Juichen YANG,Hong CHEN,Yuan YUAN,Debanjan SARKAR,Jie ZHENG

期刊论文

Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation

Kai Wang, Jinbo Pang, Liwei Li, Shengzhe Zhou, Yuhao Li, Tiezhu Zhang

期刊论文

Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics

Lin ZHANG, Yan SUN

期刊论文

Incorporation of 3-dimensional lycopodium with hydrophobic nature and interconnected nano-channels into

期刊论文

Hydrophobic polyethersulfone porous membranes for membrane distillation

Heba ABDALLAH, Ayman EL-GENDI, Maaly KHEDR, Elham EL-ZANATI

期刊论文

selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic

期刊论文

Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and

ZHU Dongmei, WANG Fei, GAO Cuiling, XU Zheng

期刊论文

利用改性纳米二氧化硅在页岩表面构建层次结构疏水表面强化钻井工程中的井壁稳定性

黄贤斌, 孙金声, 李贺, 王韧, 吕开河, 李海潮

期刊论文

Preparation and properties of a silver particle-coated and 1-dodecanethiol-modified superhydrophobic melamine sponge for oil/water separation

期刊论文

Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating

Jiajia Li, Shengcheng Zhai, Weibing Wu, Zhaoyang Xu

期刊论文

蒸汽压力和超疏水纳米复合涂层对微电子器件可靠性的影响

樊学军,陈良彪,汪正平,Hsing-Wei Chu,张国旗

期刊论文