资源类型

期刊论文 6

年份

2021 1

2020 1

2019 1

2018 1

2014 1

2012 1

关键词

检索范围:

排序: 展示方式:

Pore structure of cementitious material enhanced by graphitic nanomaterial: a critical review

S.A. GHAHARI, E. GHAFARI, L. ASSI

《结构与土木工程前沿(英文)》 2018年 第12卷 第1期   页码 137-147 doi: 10.1007/s11709-017-0431-9

摘要: Carbon nano tubes (CNT) has been introduced as an efficient nanomaterial in order to improve the mechanical and durability properties of concrete. The effect of CNT on the microstructures of cementitious materials has been widely reported. This paper combines a critical review on the effect of CNT on the pore and microstructure of cement composite with a discussion on the porosity measurement of pastes containing CNT using mercury intrusion porosimetry techniques (MIP). It was found that, surface treatment by H SO and HNO solution forms carboxyl acid groups on CNTs’ surfaces that lead to the improvement of reinforcement. In this scope, this review paper involves analyzing the effect of CNT on the microstructure and the pore structure of cementitious materials. The existing methods of measuring the porosity of cementitious material are reviewed, in particular, the contact angle measurement is discussed in detail in which the most effective parameters and possible errors of calculation is presented.

关键词: carbon nano tubes     microstructure     porosity     mercury intrusion porosimetry     cement composite    

Recent progress in MoS

Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI

《能源前沿(英文)》 2019年 第13卷 第2期   页码 251-268 doi: 10.1007/s11708-019-0625-z

摘要: In an era of graphene-based nanomaterials as the most widely studied two-dimensional (2D) materials for enhanced performance of devices and systems in solar energy conversion applications, molybdenum disulfide (MoS ) stands out as a promising alternative 2D material with excellent properties. This review first examined various methods for MoS synthesis. It, then, summarized the unique structure and properties of MoS nanosheets. Finally, it presented the latest advances in the use of MoS nanosheets for important solar energy applications, including solar thermal water purification, photocatalytic process, and photoelectrocatalytic process.

关键词: 2D nanomaterial     molybdenum disulfide     solar energy conversion     solar thermal conversion     photocatalytst     photoelectrocatalyst    

Review of recent developments in cement composites reinforced with fibers and nanomaterials

Jianzhuang XIAO, Nv HAN, Yan LI, Zhongsen ZHANG, Surendra P. SHAH

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 1-19 doi: 10.1007/s11709-021-0723-y

摘要: The quest for high-performance construction materials is led by the development and application of new reinforcement materials for cement composites. Concrete reinforcement with fibers has a long history. Nowadays, many new fibers associated with high performance and possessing eco-environmental characteristics, such as basalt fibers and plant fibers, have received much attention from researchers. In addition, nanomaterials are considered as a core material in the modification of cement composites, specifically in the enhancement of the strength and durability of composites. This paper provides an overview of the recent research progress on cement composites reinforced with fibers and nanomaterials. The influences of fibers and nanomaterials on the fresh and hardened properties of cement composites are summarized. Moreover, future trends in the application of these fibers or of nanomaterial-reinforced cement composites are proposed.

关键词: cement composites     fiber     nanomaterial     mechanical property     durability    

Comparison of the morphology and structure of WO

Diah Susanti, Stefanus Haryo N, Hasnan Nisfu, Eko Prasetio Nugroho, Hariyati Purwaningsih, George Endri Kusuma, Shao-Ju Shih

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 371-380 doi: 10.1007/s11705-012-1215-3

摘要: Tungsten (VI) oxide (WO ) nanomaterials were synthesized by a sol-gel method using WCl and C H OH as precursors followed by calcination or hydrothermal treatment. X-Ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) equipped with energy dispersive X-ray spectroscopy (EDX) were used to characterize the structure and morphology of the materials. There were significant differences between the WO materials that were calcinated and those that were subjected to a hydrothermal process. The XRD results revealed that calcination temperatures of 300°C and 400°C gave hexagonal structures and temperatures of 500°C and 600°C gave monoclinic structures. The SEM images showed that an increase in calcination temperature led to a decrease in the WO powder particle size. The TEM analysis showed that several nanoparticles agglomerated to form bigger clusters. The hydrothermal process produced hexagonal structures for holding times of 12, 16, and 20 h and monoclinic structures for a holding time of 24 h. The SEM results showed transparent rectangular particles which according to the TEM results originated from the aggregation of several nanotubes.

关键词: WO3 nanomaterial     sol-gel method     calcination     hydrothermal    

Facile synthesis of hierarchical flower-like Ag/Cu

Mengyun Wang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 813-823 doi: 10.1007/s11705-019-1854-8

摘要: Novel, hierarchical, flower-like Ag/Cu O and Au/Cu O nanostructures were successfully fabricated and applied as efficient electrocatalysts for the electrochemical reduction of CO . Cu O nanospheres with a uniform size of ~180 nm were initially synthesized. Thereafter, Cu O was used as a sacrificial template to prepare a series of Ag/Cu O composites through galvanic replacement. By varying the Ag/Cu atomic ratio, Ag /Cu O, having a hierarchical, flower-like nanostructure with intersecting Ag nanoflakes encompassing an inner Cu O sphere, was prepared. The as-prepared Ag /Cu O samples presented higher Faradaic efficiencies (FE) for CO and relatively suppressed H evolution than the parent Cu O nanospheres due to the combination of Ag with Cu O in the former. Notably, the highest CO evolution rate was achieved with Ag /Cu O due to the larger electroactive surface area furnished by the hierarchical structure. The same hierarchical flower-like structure was also obtained for the Au /Cu O composite, where the FE (10%) was even higher than that of Ag /Cu O. Importantly, the results reveal that Ag /Cu O and Au /Cu O both exhibit remarkably improved stability relative to Cu O. This study presents a facile method of developing hierarchical metal-oxide composites as efficient and stable electrocatalysts for the electrochemical reduction of CO .

关键词: bimetallic nanostructure     hierarchical metal/oxide nanomaterial     galvanic replacement     electrochemical reduction of CO2    

WO3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor

Diah SUSANTI,A.A. Gede Pradnyana DIPUTRA,Lucky TANANTA,Hariyati PURWANINGSIH,George Endri KUSUMA,Chenhao WANG,Shaoju SHIH,Yingsheng HUANG

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 179-187 doi: 10.1007/s11705-014-1431-0

摘要: Carbon monoxide is a poisonous and hazardous gas and sensitive sensor devices are needed to prevent humans from being poisoned by this gas. A CO gas sensor has been prepared from WO synthesized by a sol-gel method. The sensor chip was prepared by a spin-coating technique which deposited a thin film of WO on an alumina substrate. The chip samples were then calcined at 300, 400, 500 or 600 °C for 1 h. The sensitivities of the different sensor chips for CO gas were determined by comparing the changes in electrical resistance in the absence and presence of 50 ppm of CO gas at 200 °C. The WO calcined at 500 °C had the highest sensitivity. The sensitivity of this sensor was also measured at CO concentrations of 100 ppm and 200 ppm and at operating temperatures of 30 and 100 °C. Thermogravimetric analysis of the WO calcined at 500 °C indicated that this sample had the highest gas adsorption capacity. This preliminary research has shown that WO can serve as a CO gas sensor and that is should be further explored and developed.

关键词: WO3 nanomaterial     sol-gel     calcinations     CO gas sensor     sensitivity    

标题 作者 时间 类型 操作

Pore structure of cementitious material enhanced by graphitic nanomaterial: a critical review

S.A. GHAHARI, E. GHAFARI, L. ASSI

期刊论文

Recent progress in MoS

Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI

期刊论文

Review of recent developments in cement composites reinforced with fibers and nanomaterials

Jianzhuang XIAO, Nv HAN, Yan LI, Zhongsen ZHANG, Surendra P. SHAH

期刊论文

Comparison of the morphology and structure of WO

Diah Susanti, Stefanus Haryo N, Hasnan Nisfu, Eko Prasetio Nugroho, Hariyati Purwaningsih, George Endri Kusuma, Shao-Ju Shih

期刊论文

Facile synthesis of hierarchical flower-like Ag/Cu

Mengyun Wang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang

期刊论文

WO3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor

Diah SUSANTI,A.A. Gede Pradnyana DIPUTRA,Lucky TANANTA,Hariyati PURWANINGSIH,George Endri KUSUMA,Chenhao WANG,Shaoju SHIH,Yingsheng HUANG

期刊论文