资源类型

期刊论文 297

会议视频 9

年份

2023 3

2022 32

2021 33

2020 42

2019 13

2018 16

2017 14

2016 17

2015 18

2014 13

2013 9

2012 19

2011 14

2010 9

2009 7

2008 7

2007 7

2006 3

2005 3

2004 2

展开 ︾

关键词

环境 5

农业科学 4

人工神经网络 2

土壤 2

基质吸力 2

微波遥感 2

抗生素 2

横沙东滩 2

膨胀土 2

重金属 2

风化砂 2

DX桩 1

互花米草 1

井塔冬期快速施工成套技术 1

井帮位移 1

产流 1

京津冀 1

人为活动 1

人工冻融土 1

展开 ︾

检索范围:

排序: 展示方式:

Analysis of mobilization of inorganic ions in soil by electrokinetic remediation

Xiaojing LI, Lige WANG, Xueming SUN, Yuansheng CONG

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1463-1473 doi: 10.1007/s11709-019-0569-8

摘要: Saline soil has imposed a serious threat on many expressway engineering and agricultural areas. This paper describes the performance of saline soil treatment using electrokinetic remediation technology. Comparison study involving sample soil and soil is carried out. Two different electric fields, i.e., uniform and non-uniform are utilized to promote the migration of inorganic ions contained in the soil toward the electrode area. The effects of different electric field types and potential gradient ion migration rate in soil are investigated. The test result reveals that a uniform electric field of a constant potential gradient of 1 V/cm drives the Cl through the sample soil at a rate of 1.36 cm/h. Moreover, larger potential gradients could make ions migrate faster, but more electrical energy is consumed in such a way. Compared with uniform electric field, the non-uniform process maintains the soil pH values more effectively and consumes less electrical energy. A desirable result of removing Na in soil is expected using electrokinetic remediation technology under four-times scaling up of soil volume.

关键词: electromigration     electric fields     saline soil     soil-remediation    

Stabilization-based soil remediation should consider long-term challenges

Zhengtao Shen, Zhen Li, Daniel S. Alessi

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-018-1028-9

摘要: Soil remediation is of increasing importance globally, especially in developing countries. Among available remediation options, stabilization, which aims to immobilize contaminants within soil, has considerable advantages, including that it is cost-effective, versatile, sustainable, rapid, and often results in less secondary pollution. However, there are emerging challenges regarding the long-term performance of the technology, which may be affected by a range of environmental factors. These challenges stem from a research gap regarding the development of accurate, quantitative laboratory simulations of long-term conditions, whereby laboratory accelerated aging methods could be normalized to real field conditions. Therefore, field trials coupled with long-term monitoring are critical to further verify conditions under which stabilization is effective. Sustainability is also an important factor affecting the long-term stability of site remediation. It is hence important to consider these challenges to develop an optimized application of stabilization technology in soil remediation.

关键词: Stabilization     Soil remediation     Long-term     Trace metals    

Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological

Yuebing SUN,Dan ZHAO,Yingming XU,Lin WANG,Xuefeng LIANG,Yue SHEN

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 85-92 doi: 10.1007/s11783-014-0689-2

摘要: Stabilization in the remediation of heavy metal contaminated soils has been gaining prominence because of its cost-effectiveness and rapid implementation. In this study, microbial properties such as microbial community and enzyme activities, chemical properties such as soil pH and metal fraction, and heavy metal accumulation in spinach ( ) were considered in assessing stabilization remediation effectiveness using sepiolite. Results showed that soil pH values increased with rising sepiolite concentration. Sequential extraction results indicated that the addition of sepiolite converted significant amounts of exchangeable fraction of Cd and Pb into residual form. Treatments of sepiolite were observed to reduce Cd and Pb translocation from the soil to the roots and shoots of spinach. Concentrations of Cd and Pb exhibited 12.6%–51.0% and 11.5%–46.0% reduction for the roots, respectively, and 0.9%–46.2% and 43.0%–65.8% reduction for the shoots, respectively, compared with the control group. Increase in fungi and actinomycete counts, as well as in catalase activities, indicated that soil metabolic recovery occurred after sepiolite treatments.

关键词: stabilization remediation     heavy metals     sepiolite     soil quality     spinach (Spinacia oleracea)    

Combination of steam-enhanced extraction and electrical resistance heating for efficient remediationof perchloroethylene-contaminated soil: Coupling merits and energy consumption

《环境科学与工程前沿(英文)》 2022年 第16卷 第11期 doi: 10.1007/s11783-022-1582-z

摘要:

● Coupling merits of SEE and ERH were explored by a laboratory-scale device.

关键词: Steam-enhanced extraction     Electrical resistance heating     Dense nonaqueous phase liquid     Soil remediation     Energy consumption    

A Roadmap for Sustainable Agricultural Soil Remediation Under China’s Carbon Neutrality Vision

Fangbai Li,Liping Fang,Fengchang Wu,

《工程(英文)》 doi: 10.1016/j.eng.2022.08.010

摘要: Available online 27 September 2022A Roadmap for Sustainable Agricultural Soil Remediation Under China’s Carbon Neutrality Vision© 2022 THE AUTHORS.Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.

关键词: online     Sustainable Agricultural Soil Remediation     THE AUTHORS.Published     Roadmap     behalf     Engineering     September     China’s Carbon Neutrality Vision©     Academy     Education Press Limited Company.    

Mitigation and remediation technologies for organic contaminated soils

Lizhong ZHU, Li LU, Dong ZHANG

《环境科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 373-386 doi: 10.1007/s11783-010-0253-7

摘要: Organic contaminated soils have become a widespread environmental problem, which may lead to a great threat to the quality of agricultural production and to human health. Physical, chemical, and biological technologies have been employed for the mitigation and remediation of organic contaminated soils. This paper reviews the progress of mitigation and remediation technologies for organic contaminated soils and suggests two different strategies for the mitigation of ‘slightly-contaminated’ agricultural soils and the remediation of ‘heavily-contaminated’ soils/sites, respectively. On this basis, directions for future research in this field are suggested.

关键词: organic contaminated soil     mitigation     remediation     bioavailability    

Remediation of arsenic contaminated soil by sulfidated zero-valent iron

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1377-z

摘要:

• Sulfidation significantly enhanced As(V) immobilization in soil by zerovalent iron.

关键词: Soil     As(V)     Sulfidation     Zero-valent iron     Magnetic separation    

Enhanced electrokinetic remediation of chromium-contaminated soil using approaching anodes

Shucai LI, Tingting LI, Gang LI, Fengmei LI, Shuhai GUO

《环境科学与工程前沿(英文)》 2012年 第6卷 第6期   页码 869-874 doi: 10.1007/s11783-012-0437-4

摘要: As a new technology used for the cleaning of chromium-contaminated soil, worldwide interest in eletrokinetic (EK) remediation has grown considerably in recent times. However, owing to the fact that chromium exists as both cationic and anionic species in the soil, it is not an efficient method. This paper reports upon a study in which a process using approaching anodes (AAs) was used to enhance the removal efficiency of chromium by eletrokinetics. Two bench-scale experiments to remove chromium from contaminated soil were performed, one using a fixed anode (FA) and the other using AAs. In the AAs experiment, the anode moved toward the cathode by 7 cm every three days. After remediation, soil pH, total chromium, and fractionation of chromium in the soil were determined. The average removal efficiency of total chromium was 11.32% and 18.96% in the FA and AAs experiments, respectively. After remediation, acidic soil conditions throughout the soil were generated through the use of AAs, while 80% of the soil remained neutral or alkalic when using the FA approach. The acidic soil environment and high field intensity in the AAs experiment might have favored chromium desorption, dissolution and dissociation from the soil, plus the mobility of chromium in the soil was also enhanced. The results demonstrate that AAs used in the process of EK remediation can enhance the efficiency of chromium removal from soil.

关键词: approaching anodes     chromium-contaminated soil     electrokinetics     chromium fractionation    

Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles

Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1263-8

摘要: Abstract ▪ Overviewed evolution and environmental applications of stabilized nanoparticles. ▪ Reviewed theories on particle stabilization for enhanced reactivity/deliverability. ▪ Examined various in situ remediation technologies based on stabilized nanoparticles. ▪ Summarized knowledge on transport of stabilized nanoparticles in porous media. ▪ Identified key knowledge gaps and future research needs on stabilized nanoparticles. Due to improved soil deliverability and high reactivity, stabilized nanoparticles have been studied for nearly two decades for in situ remediation of soil and groundwater contaminated with organic pollutants. While large amounts of bench- and field-scale experimental data have demonstrated the potential of the innovative technology, extensive research results have also unveiled various merits and constraints associated different soil characteristics, types of nanoparticles and particle stabilization techniques. Overall, this work aims to critically overview the fundamental principles on particle stabilization, and the evolution and some recent developments of stabilized nanoparticles for degradation of organic contaminants in soil and groundwater. The specific objectives are to: 1) overview fundamental mechanisms in nanoparticle stabilization; 2) summarize key applications of stabilized nanoparticles for in situ remediation of soil and groundwater contaminated by legacy and emerging organic chemicals; 3) update the latest knowledge on the transport and fate of stabilized nanoparticles; 4) examine the merits and constraints of stabilized nanoparticles in environmental remediation applications; and 5) identify the knowledge gaps and future research needs pertaining to stabilized nanoparticles for remediation of contaminated soil and groundwater. Per instructions of this invited special issue, this review is focused on contributions from our group (one of the pioneers in the subject field), which, however, is supplemented by important relevant works by others. The knowledge gained is expected to further advance the science and technology in the environmental applications of stabilized nanoparticles.

关键词: Stabilized nanoparticle     In-situ remediation     Organic contaminant     Soil remediation     Groundwater     Fate and transport    

Microbial remediation of aromatics-contaminated soil

Ying Xu, Ning-Yi Zhou

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0894-x

摘要: Aromatics-contaminated soils were successfully remediated with adding single strains. Bacterial or fungal consortia were successfully used in the cases of bioaugmentation. Microbes combined with chemical or biological factors increase remediation efficiency. The environmental factors had appreciable impacts on the bioaugmentation. Aromatics-contaminated soil is of particular environmental concern as it exhibits carcinogenic and mutagenic properties. Bioremediation, a biological approach for the removal of soil contaminants, has several advantages over traditional soil remediation methodologies including high efficiency, complete pollutant removal, low expense and limited or no secondary pollution. Bioaugmentation, defined as the introduction of specific competent strains or consortia of microorganisms, is a widely applied bioremediation technology for soil remediation. In this review, it is concluded which several successful studies of bioaugmentation of aromatics-contaminated soil by single strains or mixed consortia. In recent decades, a number of reports have been published on the metabolic machinery of aromatics degradation by microorganisms and their capacity to adapt to aromatics-contaminated environments. Thus, microorganisms are major players in site remediation. The bioremediation/bioaugmentation process relies on the immense metabolic capacities of microbes for transformation of aromatic pollutants into essentially harmless or, at least, less toxic compounds. Aromatics-contaminated soils are successfully remediated with adding not only single strains but also bacterial or fungal consortia. Furthermore several novel approaches, which microbes combined with physical, chemical or biological factors, increase remediation efficiency of aromatics-contaminated soil. Meanwhile, the environmental factors also have appreciable impacts on the bioaugmentation process. The biostatistics method is recommended for analysis of the effects of bioaugmentation treatments.

关键词: Aromatics-contaminated soil     Bacteria     Bioaugmentation     Bioremediation     Fungi    

Review on remediation technologies for arsenic-contaminated soil

Xiaoming Wan, Mei Lei, Tongbin Chen

《环境科学与工程前沿(英文)》 2020年 第14卷 第2期 doi: 10.1007/s11783-019-1203-7

摘要: • Recent progress of As-contaminated soil remediation technologies is presented. • Phytoextraction and chemical immobilization are the most widely used methods. • Novel remediation technologies for As-contaminated soil are still urgently needed. • Methods for evaluating soil remediation efficiency are lacking. • Future research directions for As-contaminated soil remediation are proposed. Arsenic (As) is a top human carcinogen widely distributed in the environment. As-contaminated soil exists worldwide and poses a threat on human health through water/food consumption, inhalation, or skin contact. More than 200 million people are exposed to excessive As concentration through direct or indirect exposure to contaminated soil. Therefore, affordable and efficient technologies that control risks caused by excess As in soil must be developed. The presently available methods can be classified as chemical, physical, and biological. Combined utilization of multiple technologies is also common to improve remediation efficiency. This review presents the research progress on different remediation technologies for As-contaminated soil. For chemical methods, common soil washing or immobilization agents were summarized. Physical technologies were mainly discussed from the field scale. Phytoextraction, the most widely used technology for As-contaminated soil in China, was the main focus for bioremediation. Method development for evaluating soil remediation efficiency was also summarized. Further research directions were proposed based on literature analysis.

关键词: Arsenic     field-scale     Immobilization     Phytoextraction     Soil washing    

Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soilremediation

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-021-1388-4

摘要:

• Biochar enhanced the mobility and stability of zero-valent iron nanoparticles.

关键词: Nano zero-valent iron     Biochar     BDE209     Transport     Soil    

Engineering practice of mechanical soil aeration for the remediation of volatile organic compound-contaminated

Yan Ma, Xiaoming Du, Yi Shi, Deyi Hou, Binbin Dong, Zhu Xu, Huiying Li, Yunfeng Xie, Jidun Fang, Zheng Li, Yunzhe Cao, Qingbao Gu, Fasheng Li

《环境科学与工程前沿(英文)》 2016年 第10卷 第6期 doi: 10.1007/s11783-016-0870-x

摘要: Engineering practice of mechanical soil aeration in China is reviewed. MSA is a cost-effective technique for VOC-contaminated sites. Limitations of MSA application have been summarized. In recent years, many industrial enterprises located in the urban centers of China have been relocated owing to the rapid increase in urban development. At the sites abandoned by these enterprises, volatile organic compounds have frequently been detected, sometimes at high concentrations, particularly at sites abandoned by chemical manufacturing enterprises. With the redevelopment of sites and changes in land-use type associated with these sites, substantial amounts of contaminated soils now require remediation. Since China is a developing country, soil remediation warrants the usage of techniques that are suitable for addressing the unique challenges faced in this country. Land shortage is a common problem in China; the large numbers of contaminated sites, tight development schedules, and limited financial resources necessitate the development of cost-effective methods for land reclamation. Mechanical soil aeration is a simple, effective, and low-cost soil remediation technique that is particularly suitable for the remediation of large volatile organic compound-contaminated sites. Its effectiveness has been confirmed by conducting laboratory studies, pilot tests, and full-scale projects. This study reviews current engineering practice and developmental trends of mechanical soil aeration and analyzes the advantages and disadvantages of this technology for application in China as an emerging soil remediation market. The findings of this study might aid technology development in China, as well as assist other developing countries in the assessment and implementation of cost-effective hazardous waste site soil remediation programs.

关键词: Soil contamination     Volatile organic compound     Mechanical soil aeration     Engineering practice     China    

Effective remediation of organic-metal co-contaminated soil by enhanced electrokinetic-bioremediation

Fu Chen, Qi Zhang, Jing Ma, Qianlin Zhu, Yifei Wang, Huagen Liang

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1401-y

摘要: Abstract • A new EK-BIO technology was developed to decontaminate e-waste contaminated soil. • Adding sodium citrate in electrolyte was a good choice for decontaminating the soil. • The system has good performance with low cost. This work investigates the influence of electrokinetic-bioremediation (EK-BIO) on remediating soil polluted by persistent organic pollutants (POPs) and heavy metals (mainly Cu, Pb and Ni), originated from electronic waste recycling activity. The results demonstrate that most of POPs and metals were removed from the soil. More than 60% of metals and 90% of POPs in the soil were removed after a 30-day EK-BIO remediation assisted by citrate. A citrate sodium concentration of 0.02 g/L was deemed to be suitable because higher citrate did not significantly improve treatment performance whereas increasing dosage consumption. Citrate increased soil electrical current and electroosmotic flow. After remediation, metal residues mainly existed in stable and low-toxic states, which could effectively lower the potential hazard of toxic metals to the surrounding environment and organisms. EK-BIO treatment influenced soil microbial counts, dehydrogenase activity and community structure.

关键词: Electrokinetic     Co-contamination     Debromination    

Remediation of soil heavily polluted with polychlorinated biphenyls using a low-temperature plasma technique

Xiuhua LI, Haibo ZHANG, Yongming LUO, Ying TENG

《环境科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 277-283 doi: 10.1007/s11783-013-0562-8

摘要: Polychlorinated biphenyls PCBs) were removed by low-temperature plasma technique (dielectric barrier discharge) from heavily polluted soil and their intermediate products were analyzed. The removal rate ranged from 40.1 to 84.6% by different treatments, and they were also influenced significantly ( <0.01) by soil particle-size, electric power, gas flow rate and reaction time. The optimal reaction conditions of PCB removal from the soil were obtained experimentally when soil particle-size, electrical power, flow rate and reaction time were 5–10 mm, 21 w, 120 mL· min and 90 min, respectively. However, decreasing electrical power, flow rate and reaction time to 18 w, 60 mL· min and 60 min respectively were also acceptable in view of the cost of remediation. This technique was characterized by the additional advantage of thorough oxidation of PCBs in the soil, with no formation of intermediate products after reaction. The technique therefore shows some promise for application in the remediation of soils contaminated with persistent organic pollutants in brown field sites in urban areas.

关键词: polychlorinated biphenyls     low-temperature plasma     soil contamination     intermediate products    

标题 作者 时间 类型 操作

Analysis of mobilization of inorganic ions in soil by electrokinetic remediation

Xiaojing LI, Lige WANG, Xueming SUN, Yuansheng CONG

期刊论文

Stabilization-based soil remediation should consider long-term challenges

Zhengtao Shen, Zhen Li, Daniel S. Alessi

期刊论文

Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological

Yuebing SUN,Dan ZHAO,Yingming XU,Lin WANG,Xuefeng LIANG,Yue SHEN

期刊论文

Combination of steam-enhanced extraction and electrical resistance heating for efficient remediationof perchloroethylene-contaminated soil: Coupling merits and energy consumption

期刊论文

A Roadmap for Sustainable Agricultural Soil Remediation Under China’s Carbon Neutrality Vision

Fangbai Li,Liping Fang,Fengchang Wu,

期刊论文

Mitigation and remediation technologies for organic contaminated soils

Lizhong ZHU, Li LU, Dong ZHANG

期刊论文

Remediation of arsenic contaminated soil by sulfidated zero-valent iron

期刊论文

Enhanced electrokinetic remediation of chromium-contaminated soil using approaching anodes

Shucai LI, Tingting LI, Gang LI, Fengmei LI, Shuhai GUO

期刊论文

Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles

Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin

期刊论文

Microbial remediation of aromatics-contaminated soil

Ying Xu, Ning-Yi Zhou

期刊论文

Review on remediation technologies for arsenic-contaminated soil

Xiaoming Wan, Mei Lei, Tongbin Chen

期刊论文

Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soilremediation

期刊论文

Engineering practice of mechanical soil aeration for the remediation of volatile organic compound-contaminated

Yan Ma, Xiaoming Du, Yi Shi, Deyi Hou, Binbin Dong, Zhu Xu, Huiying Li, Yunfeng Xie, Jidun Fang, Zheng Li, Yunzhe Cao, Qingbao Gu, Fasheng Li

期刊论文

Effective remediation of organic-metal co-contaminated soil by enhanced electrokinetic-bioremediation

Fu Chen, Qi Zhang, Jing Ma, Qianlin Zhu, Yifei Wang, Huagen Liang

期刊论文

Remediation of soil heavily polluted with polychlorinated biphenyls using a low-temperature plasma technique

Xiuhua LI, Haibo ZHANG, Yongming LUO, Ying TENG

期刊论文