资源类型

期刊论文 22

年份

2023 5

2022 1

2021 1

2019 1

2018 1

2014 1

2012 3

2011 2

2009 2

2008 1

2002 1

2001 1

2000 1

展开 ︾

关键词

300 M钢 1

Al2O3-MxOy 1

WC涂层 1

一水硬铝石 1

刀具状态监测;流形学习;降维;扩散映射分析;内蕴特征提取 1

可扩展哈希;非易失内存(NVM);高并发 1

微电子机械系统 1

抗磨损 1

抗粘合薄膜 1

抗腐蚀 1

摩擦力 1

摩擦磨损 1

文件系统;持久化内存;磨损均衡;多粒度分配器 1

氧化铝管道化溶出 1

涂层 1

电镀硬铬 1

疲劳 1

磨损 1

等离子 1

展开 ︾

检索范围:

排序: 展示方式:

Tool wear mechanisms in the machining of Nickel based super-alloys: A review

Waseem AKHTAR,Jianfei SUN,Pengfei SUN,Wuyi CHEN,Zawar SALEEM

《机械工程前沿(英文)》 2014年 第9卷 第2期   页码 106-119 doi: 10.1007/s11465-014-0301-2

摘要:

Nickel based super-alloys are widely employed in aircraft engines and gas turbines due to their high temperature strength, corrosion resistance and, excellent thermal fatigue properties. Conversely, these alloys are very difficult to machine and cause rapid wear of the cutting tool, frequent tool changes are thus required resulting in low economy of the machining process. This study provides a detailed review of the tool wear mechanism in the machining of nickel based super-alloys. Typical tool wear mechanisms found by different researchers are analyzed in order to find out the most prevalent wear mechanism affecting the tool life. The review of existing works has revealed interesting findings about the tool wear mechanisms in the machining of these alloys. Adhesion wear is found to be the main phenomenon leading to the cutting tool wear in this study.

关键词: tool wear     nickel based super-alloy     wear mechanism    

Facile synthesis of polyaniline nanorods to simultaneously enhance the mechanical properties and wear

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1254-1266 doi: 10.1007/s11705-023-2297-3

摘要: To enhance the mechanical properties and wear resistance of epoxy resin, polyaniline nanorods were first synthesized using a facile route, and then introduced into the epoxy matrix to yield composites via solution mixing. Several measurements were conducted to investigate the phase structures and compositions of polyaniline nanorods, and their positive influences on the mechanical and tribological properties of epoxy resin were also characterized. The results confirmed that the as-synthesized polyaniline exhibited representative rod-like morphologies and dispersed well in the epoxy matrix, leading to significant enhancements in the tensile strength and elastic modulus of epoxy composites. The highest values of 110.33 MPa and 2.04 GPa were obtained by adding 5%–7% polyaniline nanorods, which were 43% and 62% higher than the pure sample, respectively. The wear rate was increased first and then decreased along with polyaniline nanorods, presenting the lowest value of 2.12 × 10−5 mm3·Nm–1 by adding 5% filler, which was markedly reduced by ca. 70% compared to the control sample. Finally, the possible wear mechanism was proposed and discussed in detail. This study tried to broaden the applications of polyaniline nanorods in the field of tribology.

关键词: epoxy resin     polyaniline nanorods     mechanical property     tribological performance     wear mechanism    

Integrated slipper retainer mechanism to eliminate slipper wear in high-speed axial piston pumps

《机械工程前沿(英文)》 doi: 10.1007/s11465-021-0657-z

摘要: The power density of axial piston pumps can greatly benefit from increasing the speed level. However, traditional slippers in axial piston pumps are exposed to continuous sliding on the swash plate, suffering from serious wear at high rotational speeds. Therefore, this paper presents a new integrated slipper retainer mechanism for high-speed axial piston pumps, which can avoid direct contact between the slippers and the swash plate and thereby eliminate slipper wear under severe operating conditions. A lubrication model was developed for this specific slipper retainer mechanism, and experiments were carried out on a pump prototype operating at high rotational speed up to 10000 r/min. Experimental results qualitatively validated the theoretical model and confirmed the effectiveness of the new slipper design.

关键词: axial piston pump     high speed     slipper wear     slipper design     retainer     lubrication model    

Development of a new wear resistant coating by arc spraying of a steel-based cored wire

Lidong ZHAO, Pia KUTSCHMANN, Binyou FU, Dingyong HE

《机械工程前沿(英文)》 2009年 第4卷 第1期   页码 1-4 doi: 10.1007/s11465-009-0012-2

摘要: In the present study, a cored wire of 304 L stainless steel as sheath material and NiB and WC-12Co as filler materials was designed and deposited to produce a new wear resistant coating containing amorphous phase by arc spraying. The microstructure of the coating was investigated. The porosity and hardness of the coating were determined. The wear performance of the coating was evaluated. The XRD and TEM analyses showed that there are high volume of amorphous phase and very fine crystalline grains in the coating. DTA measurements revealed that the crystallization of the amorphous phase occurred at 579.2°C. Because metallurgical processes for single droplets were non-homogenous during spraying, the lamellae in the coating have different hardness values, which lie between about 700 and 1250 HV . The abrasive wear test showed that the new Fe-based coating was very wear resistant.

关键词: amorphous phase     arc spraying     microstructure     wear     cored wire    

Effect of wood dust type on mechanical properties, wear behavior, biodegradability, and resistance to

Sawan KUMAR, Ajitanshu VEDRTNAM, S. J. PAWAR

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1446-1462 doi: 10.1007/s11709-019-0568-9

摘要: The present work reports the inclusion of different proportions of Mango/Sheesham/Mahogany/Babool dust to polypropylene for improving mechanical, wear behavior and biodegradability of wood-plastic composite (WPC). The wood dust (10%, 15%, 20% by weight) was mixed with polypropylene granules and WPCs were prepared using an injection molding technique. The mechanical, wear, and morphological characterizations of fabricated WPCs were carried out using standard ASTM methods, pin on disk apparatus, and scanning electron microscopy (SEM), respectively. Further, the biodegradability and resistance to natural weathering of WPCs were evaluated following ASTM D5338-11 and ASTM D1435-99, respectively. The WPCs consisting of Babool and Sheesham dust were having superior mechanical properties whereas the WPCs consisting of Mango and Mahogany were more wear resistant. It was found that increasing wood powder proportion results in higher Young’s modulus, lesser wear rate, and decreased stress at break. The WPCs made of Sheesham dust were least biodegradable. It was noticed that the biodegradability corresponds with resistance to natural weathering; more biodegradable WPCs were having the lesser resistance to natural weathering.

关键词: wood-plastic composites     mechanical testing     wear     biodegradability     injection molding     weathering    

Mesh relationship modeling and dynamic characteristic analysis of external spur gears with gear wear

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 9-9 doi: 10.1007/s11465-021-0665-z

摘要: Gear wear is one of the most common gear failures, which changes the mesh relationship of normal gear. A new mesh relationship caused by gear wear affects meshing excitations, such as mesh stiffness and transmission error, and further increases vibration and noise level. This paper aims to establish the model of mesh relationship and reveal the vibration characteristics of external spur gears with gear wear. A geometric model for a new mesh relationship with gear wear is proposed, which is utilized to evaluate the influence of gear wear on mesh stiffness and unloaded static transmission error (USTE). Based on the mesh stiffness and USTE considering gear wear, a gear dynamic model is established, and the vibration characteristics of gear wear are numerically studied. Comparison with the experimental results verifies the proposed dynamic model based on the new mesh relationship. The numerical and experimental results indicate that gear wear does not change the structure of the spectrum, but it alters the amplitude of the meshing frequencies and their sidebands. Several condition indicators, such as root-mean-square, kurtosis, and first-order meshing frequency amplitude, can be regarded as important bases for judging gear wear state.

关键词: gear wear     mesh relationship     mesh stiffness     transmission error     vibration characteristics    

Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2114-2126 doi: 10.1007/s11705-023-2357-1

摘要: In this study, nickel phyllosilicate was synthesized based on molybdenum disulfide (MoS2@NiPS) by the sol-gel method, and then MoS2@NiPS was used to prepare epoxy composites. The thermal stability, flame retardancy, and frictional performances of epoxy composites were studied. With the addition of 3 wt% MoS2@NiPS, the epoxy composite increased the limiting oxygen index from 23.8% to 26.1% and reduced the vertical burning time from 166 s for epoxy resin to 35 s. The residual char of the epoxy composite increased from 11.8 to 20.2 wt%. MoS2@NiPS promoted the graphitization of the residual char, and facilitated the formation of a dense and continuous char layer, thereby improving the fire safety of epoxy resin. The epoxy composite with 3 wt% MoS2@NiPS had excellent wear resistance property with a wear rate of 2.19 × 10−5 mm3·N–1·m–1, which was 68.8% lower than that of epoxy resin. This study presented a practical approach to improve the frictional and fire resistance of epoxy composites.

关键词: molybdenum disulfide     nickel phyllosilicate     epoxy resin     flame retardancy    

Comparative assessment of force, temperature, and wheel wear in sustainable grinding aerospace alloy

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0719-x

摘要: The substitution of biolubricant for mineral cutting fluids in aerospace material grinding is an inevitable development direction, under the requirements of the worldwide carbon emission strategy. However, serious tool wear and workpiece damage in difficult-to-machine material grinding challenges the availability of using biolubricants via minimum quantity lubrication. The primary cause for this condition is the unknown and complex influencing mechanisms of the biolubricant physicochemical properties on grindability. In this review, a comparative assessment of grindability is performed using titanium alloy, nickel-based alloy, and high-strength steel. Firstly, this work considers the physicochemical properties as the main factors, and the antifriction and heat dissipation behaviours of biolubricant in a high temperature and pressure interface are comprehensively analysed. Secondly, the comparative assessment of force, temperature, wheel wear and workpiece surface for titanium alloy, nickel-based alloy, and high-strength steel confirms that biolubricant is a potential replacement of traditional cutting fluids because of its improved lubrication and cooling performance. High-viscosity biolubricant and nano-enhancers with high thermal conductivity are recommended for titanium alloy to solve the burn puzzle of the workpiece. Biolubricant with high viscosity and high fatty acid saturation characteristics should be used to overcome the bottleneck of wheel wear and nickel-based alloy surface burn. The nano-enhancers with high hardness and spherical characteristics are better choices. Furthermore, a different option is available for high-strength steel grinding, which needs low-viscosity biolubricant to address the debris breaking difficulty and wheel clogging. Finally, the current challenges and potential methods are proposed to promote the application of biolubricant.

关键词: grinding     aerospace     difficult-to-machine material     biolubricant     physicochemical property     grindability    

Correction to: Effect of wood dust type on mechanical properties, wear behavior, biodegradability, and

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1071-1071 doi: 10.1007/s11709-021-0736-6

Study on tribological and electrochemistry properties of metal materials in H2O2 solutions

Chengqing YUAN, Li YU, Jian LI, Xinping YAN

《机械工程前沿(英文)》 2012年 第7卷 第1期   页码 93-98 doi: 10.1007/s11465-012-0313-8

摘要:

Hydrogen peroxide (H2O2) is a kind of ideal green propellant. It is crucial to study the wear behavior and failure modes of the metal materials under the strong oxidizing environment of H2O2. This study aims to investigate the wear of rubbing pairs of 2Cr13 stainless steel against 1045 metal in H2O2 solutions, which has a great effect on wear, the decomposition and damage mechanism of materials. The comparison analysis of the friction coefficients, wear mass loss, worn surface topographies and current densities was conducted under different concentrations of H2O2 solutions. There were significant differences in the tribological and electrochemistry properties of the rubbing pairs in different H2O2 solutions.

关键词: hydrogen peroxide     wear     corrosion     wear mechanism    

Application of grey-taguchi method for optimization of dry sliding wear properties of aluminum MMCs

Rajesh SIRIYALA, Gopala Krishna ALLURU, Rama Murthy Raju PENMETSA, Muthukannan DURAISELVAM

《机械工程前沿(英文)》 2012年 第7卷 第3期   页码 279-287 doi: 10.1007/s11465-012-0329-0

摘要:

Through a pin-on-disc type wear setup, the dry sliding wear behavior of SiC-reinforced aluminum composites produced using the molten metal mixing method was investigated in this paper. Dry sliding wear tests were carried on SiC-reinforced metal matrix composites (MMCs) and its matrix alloy sliding against a steel counter face. Different contact stresses, reinforcement percentages, sliding distances, and sliding velocities were selected as the control variables, and the responses were selected as the wear volume loss (WVL) and coefficient of friction (COF) to evaluate the dry sliding performance. An L25 orthogonal array was employed for the experimental design. Initially, the optimization of the dry sliding performance of the SiC-reinforced MMCs was performed using grey relational analysis (GRA). Based on the GRA, the optimum level parameters for overall grey relational grade in terms of WVL and COF were identified. Analysis of variance was performed to determine the effect of individual factors on the overall grey relational grade. The results indicated that the sliding velocity was the most effective factor among the control parameters on dry sliding wear, followed by the reinforcement percentage, sliding distance, and contact stress. Finally, the wear surface morphology and wear mechanism of the composites were investigated through scanning electron microscopy.

关键词: aluminum     ANOVA (analysis of variance)     grey relational analysis     metal matrix composites     SiC particulates     Taguchi    

超音速火焰喷涂WC涂层替代电镀硬铬:疲劳和摩擦磨损性能

周克崧,邓春明,刘敏

《中国工程科学》 2009年 第11卷 第10期   页码 48-54

摘要:

以WC涂层在飞机起落架的应用作为研究背景,对300 M超高强钢基体上电镀硬铬和超音速火焰喷涂WC-17Co和WC-10Co4Cr涂层的疲劳及与Al—Ni—Bronze合金的摩擦磨损性能进行了研究。结果表明,有WC涂层300 M钢的疲劳寿命与无涂层300 M钢的疲劳极限和过载下的疲劳寿命相当,WC涂层对300 M钢的疲劳寿命不会产生不良影响;而电镀硬铬使300 M钢的疲劳极限降低120 MPa,疲劳寿命则降低70 %~90 %。疲劳失效分析表明, WC涂层中的疲劳裂纹在界面上发生偏斜,转向沿界面扩展,因此对基体的疲劳寿命没有影响;而电镀硬铬中的的疲劳裂纹扩展到基体表面,显著降低基体的疲劳寿命。10#航空液压油润滑下涂层与Al—Ni—Bronze合金的摩擦磨损表明,与电镀硬铬对磨时,Al—Ni—Bronze合金发生明显的磨损,同时因质量转移而导致电镀硬铬的质量显著增加;而WC涂层仅略有失重,相应地Al—Ni—Bronze合金的失重仅为与电镀硬铬层磨损失重的1/50~1/100。WC涂层与Al—Ni—Bronze合金的磨损机理主要为磨粒磨损;电镀硬铬与Al—Ni—Bronze合金的磨损机理主要为黏着磨损。

关键词: 300 M钢     超音速火焰喷涂     WC涂层     电镀硬铬     疲劳     摩擦磨损    

Elliptical lobe shape gerotor pump design to minimize wear

Mohammad Reza KARAMOOZ RAVARI

《机械工程前沿(英文)》 2011年 第6卷 第4期   页码 429-434 doi: 10.1007/s11465-011-0247-6

摘要:

The gerotor pumps are the most important parts of mechanical equipment that have a vast number of applications in industries and automobiles. Because the gerotor pumps cannot be adjusted for wear so it is important to reduce the wear as much as possible. In this paper first mathematical equations for elliptical lobe shape rotors profile and curvature of them have been derived and then Specific flow and wear rate proportional factor (WRPF) have been formulated. To reach the minimum wear in rotors teeth, the ellipse shape factor is changed for each value of number of outer rotor teeth in a feasible range and wear rate proportional factor has been resulted. Also in order to have better comparison specific flow has been presented. The obtained results have been compared with circular pumps with similar geometrical parameters and show the significant improvement in wear of the rotors with negligible changes in the specific flow.

关键词: gerotor pump     elliptical lobe shape pump     wear rate proportional factor (WRPF)     specific flow    

一水硬铝石氧化铝生产工艺创新

宋培凯

《中国工程科学》 2001年 第3卷 第8期   页码 87-90

摘要:

论述了我国铝土矿的资源特点和氧化铝的生产现状,介绍了一水硬铝石管道化溶出新技术及实施效果,阐明了一水硬铝石溶出技术的发展方向和意义。

关键词: 一水硬铝石     氧化铝管道化溶出     节能降耗     磨损    

Effect of magneto rheological damper on tool vibration during hard turning

P. Sam PAUL, A. S. VARADARAJAN

《机械工程前沿(英文)》 2012年 第7卷 第4期   页码 410-416 doi: 10.1007/s11465-012-0341-4

摘要:

Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.

关键词: tool vibration     magneto rheological damper     hard turning     surface finish     tool wear    

标题 作者 时间 类型 操作

Tool wear mechanisms in the machining of Nickel based super-alloys: A review

Waseem AKHTAR,Jianfei SUN,Pengfei SUN,Wuyi CHEN,Zawar SALEEM

期刊论文

Facile synthesis of polyaniline nanorods to simultaneously enhance the mechanical properties and wear

期刊论文

Integrated slipper retainer mechanism to eliminate slipper wear in high-speed axial piston pumps

期刊论文

Development of a new wear resistant coating by arc spraying of a steel-based cored wire

Lidong ZHAO, Pia KUTSCHMANN, Binyou FU, Dingyong HE

期刊论文

Effect of wood dust type on mechanical properties, wear behavior, biodegradability, and resistance to

Sawan KUMAR, Ajitanshu VEDRTNAM, S. J. PAWAR

期刊论文

Mesh relationship modeling and dynamic characteristic analysis of external spur gears with gear wear

期刊论文

Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance

期刊论文

Comparative assessment of force, temperature, and wheel wear in sustainable grinding aerospace alloy

期刊论文

Correction to: Effect of wood dust type on mechanical properties, wear behavior, biodegradability, and

期刊论文

Study on tribological and electrochemistry properties of metal materials in H2O2 solutions

Chengqing YUAN, Li YU, Jian LI, Xinping YAN

期刊论文

Application of grey-taguchi method for optimization of dry sliding wear properties of aluminum MMCs

Rajesh SIRIYALA, Gopala Krishna ALLURU, Rama Murthy Raju PENMETSA, Muthukannan DURAISELVAM

期刊论文

超音速火焰喷涂WC涂层替代电镀硬铬:疲劳和摩擦磨损性能

周克崧,邓春明,刘敏

期刊论文

Elliptical lobe shape gerotor pump design to minimize wear

Mohammad Reza KARAMOOZ RAVARI

期刊论文

一水硬铝石氧化铝生产工艺创新

宋培凯

期刊论文

Effect of magneto rheological damper on tool vibration during hard turning

P. Sam PAUL, A. S. VARADARAJAN

期刊论文