资源类型

期刊论文 111

年份

2023 4

2022 5

2021 6

2020 6

2019 4

2018 8

2017 4

2016 5

2015 3

2014 2

2013 4

2012 7

2011 9

2010 7

2009 5

2008 7

2007 9

2006 3

2005 3

2003 2

展开 ︾

关键词

液压提升机 3

微地震监测 2

施工技术 2

水利水电工程 2

水力压裂 2

液压系统 2

IHNI-1反应堆;热工水力;子通道;安全分析 1

Matlab 1

三峡 1

三峡升船机 1

三峡工程 1

三峡船闸;输水方式;水流条件;通过能力 1

三维地质建模 1

不确定性分析 1

事件定位 1

人工裂缝方向 1

人机工程学 1

介质间断面 1

仿真 1

展开 ︾

检索范围:

排序: 展示方式:

Multiobjective trajectory optimization of intelligent electro-hydraulic shovel

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0706-2

摘要: Multiobjective trajectory planning is still face challenges due to certain practical requirements and multiple contradicting objectives optimized simultaneously. In this paper, a multiobjective trajectory optimization approach that sets energy consumption, execution time, and excavation volume as the objective functions is presented for the electro-hydraulic shovel (EHS). The proposed cubic polynomial S-curve is employed to plan the crowd and hoist speed of EHS. Then, a novel hybrid constrained multiobjective evolutionary algorithm based on decomposition is proposed to deal with this constrained multiobjective optimization problem. The normalization of objectives is introduced to minimize the unfavorable effect of orders of magnitude. A novel hybrid constraint handling approach based on -constraint and the adaptive penalty function method is utilized to discover infeasible solution information and improve population diversity. Finally, the entropy weight technique for order preference by similarity to an ideal solution method is used to select the most satisfied solution from the Pareto optimal set. The performance of the proposed strategy is validated and analyzed by a series of simulation and experimental studies. Results show that the proposed approach can provide the high-quality Pareto optimal solutions and outperforms other trajectory optimization schemes investigated in this article.

关键词: trajectory planning     electro-hydraulic shovel     cubic polynomial S-curve     multiobjective optimization     entropy weight technique    

Effects of slip length and hydraulic diameter on hydraulic entrance length of microchannels with superhydrophobic

Wenchi GONG, Jun SHEN, Wei DAI, Zeng DENG, Xueqiang DONG, Maoqiong GONG

《能源前沿(英文)》 2020年 第14卷 第1期   页码 127-138 doi: 10.1007/s11708-020-0661-8

摘要: This paper investigated effects of slip length and hydraulic diameter on the hydraulic entrance length of laminar flow in superhydrophobic microchannels. Numerical investigations were performed for square microchannels with Re ranging between 0.1 and 1000. It is found that superhydrophobic microchannels have a longer hydraulic entrance length than that of conventional ones by nearly 26.62% at a low Re. The dimensionless hydraulic entrance length slightly increases with the increasing slip length at approximately Re<10, and does not vary with the hydraulic diameter. A new correlation to predict the entrance length in square microchannels with different slip lengths was developed, which has a satisfying predictive performance with a mean absolute relative deviation of 5.69%. The results not only ascertain the flow characteristics of superhydrophobic microchannels, but also suggest that super hydrophobic microchannels have more significant advantages for heat transfer enhancement at a low Re.

关键词: laminar flow     hydraulic entrance length     super hydrophobic surface     slip length     hydraulic diameter    

Modelling the thresholds of nitrogen/phosphorus concentration and hydraulic retention time for bloom

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1564-1

摘要:

● A new model for bloom control in open land scape water was constructed.

关键词: Reclaimed water landscape     Algal bloom     Nitrogen and phosphorus     Hydraulic retention time     Threshold     Control model    

Hydromechanical model for hydraulic fractures using XFEM

Bo HE

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 240-249 doi: 10.1007/s11709-018-0490-6

摘要: In this study, a hydromechanical model for fluid flow in fractured porous media is presented. We assume viscous fluids and the coupling equations are derived from the mass and momentum balance equations for saturated porous media. The fluid flow through discrete cracks will be modelled by the extended finite element method and an implicit time integration scheme. We also present a consistent linearization of the underlying non-linear discrete equations. They are solved by the Newton-Raphson iteration procedure in combination with a line search. Furthermore, the model is extended to includes crack propagation. Finally, examples are presented to demonstrate the versatility and efficiency of this two-scale hydromechanical model. The results suggest that the presence of the fracture in a deforming, porous media has great impact on the fluid flow and deformation patterns.

关键词: multi-phase medium     porous     fracture     multi-scale method    

Review of fluid and control technology of hydraulic wind turbines

Maolin CAI, Yixuan WANG, Zongxia JIAO, Yan SHI

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 312-320 doi: 10.1007/s11465-017-0433-2

摘要:

This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

关键词: wind turbine     hydraulic system     fluid model     control technology    

Simulation analysis of pressure regulation of hydraulic thrust system on a shield tunneling machine

Zhibin LIU, Haibo XIE, Huayong YANG

《机械工程前沿(英文)》 2011年 第6卷 第3期   页码 377-382 doi: 10.1007/s11465-011-0226-y

摘要:

Hydraulic thrust system is an important system in a shield tunneling machine. Pressure regulation of thrust cylinders is the most important function for thrust system during tunnel excavation. In this paper, a hydraulic thrust system is explained, and a corresponding simulation model is carried out in order to study the system characteristics. Pressure regulation of a certain group’s cylinders has little influence on regulation of the other groups’ cylinders. The influence will not affect the process much during tunnel excavation. Pump displacement may have a greater effect on pressure regulation and oil supply flow rate should be adaptive to the system’s demand. A exacting situation is simulated to explain how pressure regulation works during tunnel excavation.

关键词: tunnel     hydraulic thrust system     pressure regulation     simulation    

A novel high-temperature and high-pressure hydraulic pump based on mononeuron control

Linhui ZHAO, Xin FANG

《机械工程前沿(英文)》 2009年 第4卷 第2期   页码 219-223 doi: 10.1007/s11465-009-0024-y

摘要: Based on structures and characteristics of traditional hydraulic pumps, this paper proposes a novel high-temperature and high-pressure hydraulic pump (HHHP) that can work under 150°C and 28 MPa to overcome problems of traditional high-temperature plunger pumps. The HHHP is designed with the structure of mechanical division and double cylinder parallel. The control signals of two cylinders are two separate triangle waveforms with 90° phase difference. Because the output waveforms of two cylinders have the same characteristics as the control signals, the HHHP can obtain a stable output after two separate waveforms are superposed. A mononeuron self-adaptive PID control algorithm is also improved by modifying parameters and . Two improved controllers are used to control the two cylinders, respectively, making two displacements of plungers match each other. Therefore, reduced fluctuations and stable pressure output is obtained. Besides simulation, tests on the built prototype test system are carried out to verify the performance of HHHP. Results show that the improved control approach can limit fluctuations to a lower level and the HHHP system attains good outputs under different signal periods and different pressures.

关键词: mononeuron PID control     hydraulic pump     pressure fluctuation    

Distributed monitoring and diagnosis system for hydraulic system of construction machinery

Xiaohu CHEN, Wenfeng WU, Hangong WANG, Yongtao ZHOU,

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 106-110 doi: 10.1007/s11465-009-0089-7

摘要: This paper mainly presents a distributed monitoring and diagnosis system for the hydraulic system of construction machinery based on the controller area net (CAN) field bus. The hardware of the distributed condition monitoring and fault diagnosis system is designed. Its structure including the sensors, distributed data acquisition units, central signal processing unit, and CAN field bus is introduced. The software is also programmed. The general software design and its realization are studied in detail. The experiments and applications indicate that the distributed condition monitoring and fault diagnosis system can effectively realize its function of real-time online condition monitoring and fault diagnosis for the hydraulic system of construction machinery.

关键词: construction machinery     hydraulic system     distributed condition monitoring     controller area net (CAN) field bus     fault diagnosis    

Passive convergence-permeable reactive barrier (PC-PRB): An effective configuration to enhance hydraulic

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1591-y

摘要:

● A novel PRB configuration based on passive convergent flow effect was proposed.

关键词: Passive convergence-permeable reactive barrier (PC-PRB)     Permeable reactive barrier configuration     Numerical simulation     Hydraulic performance evaluation     Sensitivity analysis    

Vehicle roll stability control with active roll-resistant electro-hydraulic suspension

Lijun XIAO, Ming WANG, Bangji ZHANG, Zhihua ZHONG

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 43-54 doi: 10.1007/s11465-019-0547-9

摘要: This study examines roll stability control for vehicles with an active roll-resistant electro-hydraulic suspension (RREHS) subsystem under steering maneuvers. First, we derive a vehicle model with four degrees of freedom and incorporates yaw and roll motions. Second, an optimal linear quadratic regulator controller is obtained in consideration of dynamic vehicle performance. Third, an RREHS subsystem with an electric servo-valve actuator is proposed, and the corresponding dynamic equations are obtained. Fourth, field experiments are conducted to validate the performance of the vehicle model under sine-wave and double-lane-change steering maneuvers. Finally, the effectiveness of the active RREHS is determined by examining vehicle responses under sine-wave and double-lane-change maneuvers. The enhancement in vehicle roll stability through the RREHS subsystem is also verified.

关键词: electro-hydraulic suspension     roll stability     LQR     experiment    

Tomographic diagnosis of defects in hydraulic concrete structure

ZHAO Mingjie, XU Xibin

《结构与土木工程前沿(英文)》 2008年 第2卷 第3期   页码 226-232 doi: 10.1007/s11709-008-0027-5

摘要: The ultrasonic tomographic technology is applied to diagnose the defects in hydraulic concrete structure. In order to improve the precision of diagnoses, the wavelet transformation is used in the processing of ultrasonic signals. The influences of water, scale and orientation of defect, processing methods and theoretical model on image resolution are investigated. The experimental results indicate that the result of the tomographic diagnosis of a single defect is sensitive and the boundary can be clearly determined. However, the image resolution of multiple defects is not satisfactory. The water content and scale of a defect may significantly affect the imaging resolution. Defects with the orientation perpendicular to the direction of the diagnosis may have higher precision in diagnosing. The wavelet transformation technology can elevate the imaging resolution. The applied calculation model plays a very important role in improving the accuracy of detection.

关键词: satisfactory     processing     orientation     tomographic diagnosis     orientation perpendicular    

Thermal-hydraulic performance of novel louvered fin using flat tube cross-flow heat exchanger

DONG Junqi, CHEN Jiangping, CHEN Zhijiu

《能源前沿(英文)》 2008年 第2卷 第1期   页码 99-106 doi: 10.1007/s11708-008-0010-9

摘要: Experimental studies were conducted to investigate the air-side heat transfer and pressure drop characteristics of a novel louvered fins and flat tube heat exchangers. A series of tests were conducted for 9 heat exchangers with different fin space and fin length, at a constant tube-side water flow rate of 2.8 m/h. The air side thermal performance data were analyzed using the effectiveness-NTU method. Results were presented as plot of Colburn factor and friction factor against the Reynolds number in the range of 500–6500. The characteristics of the heat transfer and pressure drop of different fin space and fin length were analyzed and compared. In addition, the curves of the heat transfer coefficients vs. pumping power per unit heat transfer area were plotted. Finally, the area optimization factor was used to evaluate the thermal hydraulic performance of the louvered fins with differential geometries. The results showed that the and factors increase with the decrease of the fin space and fin length, and the fin space has more obvious effect on the thermal hydraulic characteristics of the novel louvered fins.

关键词: obvious effect     different     thermal hydraulic     constant tube-side     Colburn    

Design approach for single piston hydraulic free piston diesel engines

Wei WU, Shihua YUAN, Jibin HU, Chongbo JING,

《机械工程前沿(英文)》 2009年 第4卷 第4期   页码 371-378 doi: 10.1007/s11465-009-0069-y

摘要: The operating characteristics of a single piston hydraulic free piston diesel engine differ significantly from conventional diesel engines and this provides a theoretical basis for controlling and optimizing the design of the engine. The design of the proposed engine intended as a power supply for a hydraulic propulsion vehicle is presented. An engine performance forecast model was generated in AMESim. The performance of the prototype engine is predicted and the predictive results are verified with experiments. The particular features of the engine are discussed. The dynamic characteristics of the prototype engine are analyzed and the results indicate the rationality and feasibility of the engine design parameters. The features of the controllable working frequency and the intermittence output flows are provided. The flow capacity characteristics of the hydraulic valves on the prototype engine are offered. The methods for starting and the operation after misfire are presented.

关键词: free piston engine (FPE)     diesel engine     hydraulic equipment     simulation     experiment    

油压极值比与极值比效率

齐茂林

《中国工程科学》 2001年 第3卷 第4期   页码 73-75

摘要:

文章应用基础公式,推导液压系统油压极值比与极值比效率之间的关系式。该式说明,油压极值比越大,极值比效率就越低。提出了油压极值比是可以设计和选择的。

关键词: 油压极值比     极值比效率     液压系统    

Design and characteristic research of a novel electromechanical-hydraulic hybrid actuator with two transmission

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0735-x

摘要: Servo-hydraulic actuators (SHAs) are widely used in mechanical equipment to drive heavy-duty mechanisms. However, their energy efficiency is low, and their motion characteristics are inevitably affected by uncertain nonlinearities. Electromechanical actuators (EMAs) possess superior energy efficiency and motion characteristics. However, they cannot easily drive heavy-duty mechanisms because of weak bearing capacity. This study proposes and designs a novel electromechanical-hydraulic hybrid actuator (EMHA) that integrates the advantages of EMA and SHA. EMHA mainly features two transmission mechanisms. The piston of the hydraulic transmission mechanism and the ball screw pair of the electromechanical transmission mechanism are mechanically fixed together through screw bolts, realizing the integration of two types of transmission mechanisms. The control scheme of the electromechanical transmission mechanism is used for motion control, and the hydraulic transmission mechanism is used for power assistance. Then, the mathematical model, structure, and parameter design of the new EMHA are studied. Finally, the EMHA prototype and test platform are manufactured. The test results prove that the EMHA has good working characteristics and high energy efficiency. Compared with the valve-controlled hydraulic cylinder system, EMHA exhibits a velocity tracking error and energy consumption reduced by 49.7% and 54%, respectively, under the same working conditions.

关键词: electromechanical-hydraulic hybrid actuator (EMHA)     integration     transmission mechanisms     power assistance     energy efficiency     working characteristics    

标题 作者 时间 类型 操作

Multiobjective trajectory optimization of intelligent electro-hydraulic shovel

期刊论文

Effects of slip length and hydraulic diameter on hydraulic entrance length of microchannels with superhydrophobic

Wenchi GONG, Jun SHEN, Wei DAI, Zeng DENG, Xueqiang DONG, Maoqiong GONG

期刊论文

Modelling the thresholds of nitrogen/phosphorus concentration and hydraulic retention time for bloom

期刊论文

Hydromechanical model for hydraulic fractures using XFEM

Bo HE

期刊论文

Review of fluid and control technology of hydraulic wind turbines

Maolin CAI, Yixuan WANG, Zongxia JIAO, Yan SHI

期刊论文

Simulation analysis of pressure regulation of hydraulic thrust system on a shield tunneling machine

Zhibin LIU, Haibo XIE, Huayong YANG

期刊论文

A novel high-temperature and high-pressure hydraulic pump based on mononeuron control

Linhui ZHAO, Xin FANG

期刊论文

Distributed monitoring and diagnosis system for hydraulic system of construction machinery

Xiaohu CHEN, Wenfeng WU, Hangong WANG, Yongtao ZHOU,

期刊论文

Passive convergence-permeable reactive barrier (PC-PRB): An effective configuration to enhance hydraulic

期刊论文

Vehicle roll stability control with active roll-resistant electro-hydraulic suspension

Lijun XIAO, Ming WANG, Bangji ZHANG, Zhihua ZHONG

期刊论文

Tomographic diagnosis of defects in hydraulic concrete structure

ZHAO Mingjie, XU Xibin

期刊论文

Thermal-hydraulic performance of novel louvered fin using flat tube cross-flow heat exchanger

DONG Junqi, CHEN Jiangping, CHEN Zhijiu

期刊论文

Design approach for single piston hydraulic free piston diesel engines

Wei WU, Shihua YUAN, Jibin HU, Chongbo JING,

期刊论文

油压极值比与极值比效率

齐茂林

期刊论文

Design and characteristic research of a novel electromechanical-hydraulic hybrid actuator with two transmission

期刊论文